5,6,7,4′-Tetramethoxyflavanone attenuates NADPH oxidase 1/4 and promotes sirtuin-1 to inhibit cell stress, senescence and apoptosis in Aβ25-35–mediated SK-N-SH dysfunction
DOI:
https://doi.org/10.17179/excli2021-3841Keywords:
5,6,7,4’-tetramethoxyflavanone, apoptosis, NOX1/4, senescence, surtuin-1Abstract
Amyloidogenesis is a fundamental step of amyloid beta (Aβ) generation-induced toxicity that is commonly reported to disrupt neuronal circuits, function and survival in Alzheimer’s disease (AD). The neuroprotective effect of 5,6,7,4’-tetramethoxyflavanone (TMF) from Chormolaela odorata extract on brain degeneration and amyloidogenesis has previously been demonstrated. However, the mechanistic evidence for TMF’s effects is still unclear. In this study, we evaluated the neuroprotective effect of TMF in Aβ25-35-induced toxicity in SK-N-SH neuroblastoma cells. Herein, we demonstrated that TMF exhibited potent antioxidant activity and significantly increased cell viability and decreased ROS production in a dose-dependent manner. Moreover, TMF reversed the effect of Aβ25-35, which caused energy deprivation and apoptosis, by decreasing the ratio of Bax/Bcl-xL and reducing mitochondrial membrane potential (Δψm), caspase-3 expression, apoptotic cells, and attenuating glucose transporter (Glut-3) expression. In addition, TMF protected against Aβ25-35-induced cellular senescence by attenuating β-galactosidase, p-21 and p-53 expression and promoted the expression of Sirt-1 and p-Rb. In addition, the effects of TMF on Aβ25-35 toxicity were related to the upregulation of phase II antioxidant and nuclear factor erythroid 2-related factor-2 (Nrf2) signaling, including superoxide dismutase (SOD), heme oxygenase (HO)-1, and nuclear translocation of Nrf2. Finally, we also found that TMF attenuated Aβ25-35-reduced synaptic plasticity by increasing the expression of synaptophysin and PSD-95, which was correlated with a decrease in acetylcholine esterase (AChE). Importantly, we found that the protective effects of TMF on Aβ25-35 were bidirectional, including marked inhibition of NADPH oxidase (NOX)-4 activity and partial activation of Sirt-1, which occurred prior to a reduction in the negative responses. Therefore, TMF may be useful for treating Aβ toxicity in AD.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Pichaya Jumnongprakhon, Ratchanaporn Chokchaisiri, Sarinthorn Thummayot, Apichart Suksamrarn, Chainarong Tocharus, Jiraporn Tocharus
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).