Common transcriptional programs and the role of chemokine (C-C motif) ligand 20 (CCL20) in cell migration of cholangiocarcinoma
DOI:
https://doi.org/10.17179/excli2019-1893Keywords:
CCL20, CCR6, cholangiocarcinoma (CCA), microarray, epithelial-mesenchymal transition (EMT), cell migrationAbstract
The incidence of cholangiocarcinoma (CCA) has risen in many countries, but there is still no appropriate screening and treatment available. The growing number of microarray data published todays can be a powerful resource for the discovery of biomarkers to tackle challenges in the management of CCA. This study analyzed multiple microarray datasets to identify the common transcriptional networks in CCA and select a possible biomarker for functional study in CCA cell lines. A systematic searching identified 4 microarray datasets from Gene Expression Omnibus (GEO) repository and PubMed articles. Differential expression analysis between tumor and normal tissues was performed in each dataset. In order to characterize the common expression pattern, differentially expressed genes (DEGs) from all datasets were combined and visualized by hierarchical clustering and heatmap. Gene enrichment analysis performed in each cluster revealed that over-expressed DEGs were enriched in cell cycle, cell migration and response to cytokines while under-expressed DEGs were enriched in metabolic processes such as oxidation-reduction, lipid, and drug. To explain tumor characteristics, genes enriched in cell migration and response to cytokines were further investigated. Among these genes, CCL20 was selected for functional study because its role has never been studied in CCA. Moreover, its signaling may be regulated by disrupting its only receptor, CCR6. Treatment with recombinant CCL20 induced higher cell migration and increased expression of N-cad. In contrast, knockdown of CCR6 by siRNA reduced cell migration ability and decreased N-cadherin level. Altogether, these results suggested the contribution of CCL20/CCR6 signaling in cell migration through epithelial-mesenchymal transition process. Thus, CCL20/CCR6 signaling might be a target for the management of CCA.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Hay Mar Win Maung, Waraporn Chan-On, Nawapol Kunkeaw, Prasong Khaenam
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).