Notch inhibitors induce diarrhea, hypercrinia and secretory cell metaplasia in the human colon
DOI:
https://doi.org/10.17179/excli2021-3572Keywords:
Notch inhibitor, gamma secretase inhibitor, secretory cell metaplasiaAbstract
In humans, inhibition of Notch oncogenic signaling leads to tumor regression. Preclinical studies indicate that Notch signaling contributes to the maintenance of intestinal homeostasis. Here, we sought to describe the intestinal effects of a first-in-human Notch inhibitor in an indication of refractory cancer. Between 2014 and 2017, adult patients treated for refractory cancer with the novel Notch inhibitor LY3039478 and who had grade ≥ 2 diarrhea were referred to the gastroenterology department of a tertiary hospital in the Paris region of France. Eleven patients (median (range) age: 72 (29–83)) were included in the study. All patients had advanced cancer: adenoid cystic carcinoma (n=3, 27 %), sarcoma (n=3, 27 %), and other types (n=5, 46 %). In all cases, digestive tract endoscopy revealed abundant mucus in the intestinal lumen, and digestive tract biopsies showed an abnormally low proportion of enterocytes and marked elevation of the proportion of pseudostratified goblet cells. Microscopic inflammation was seen in colon biopsies from 2 of the 11 patients (18 %). The clinical, endoscopic and histological abnormalities were dependent on the dose of Notch inhibitor. All patients resolved their digestive signs or symptoms after discontinuing the dose and the median (range) time interval between discontinuation of the Notch inhibitor and resolution of all the gastrointestinal signs and symptoms was 7 days (4–24). Likewise, the median time interval between discontinuation and resolution of the histological abnormalities was 7 days (1–10). Blocking Notch signaling induces secretory cell metaplasia of the intestinal epithelium, which in turn leads to transient diarrhea. Our results confirm the role of Notch signaling in intestinal homeostasis in humans.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Michael Collins, Jean-Marie Michot, Christophe Bellanger, Charlotte Mussini, Karim Benhadji, Christophe Massard, Franck Carbonnel
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).