Supplementary information to:

Original article:

A REGULATORY COMPLIANT SHORT-TERM ORAL TOXICITY STUDY OF SOLUBLE [60]FULLERENES IN RATS

Christopher Burres¹, Robert Wong¹, Fabio Pedreira¹, Maria Da Silva Pimenta¹

Fathi Moussa^{2*}

- ¹ SES Research Inc., Houston, TX/USA
- ² Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay; Gif-sur-Yvette 13 avenue des Sciences, 91190, France
- * **Corresponding author:** Fathi Moussa, Institut de Chimie Physique, CNRS UMR 8000,

Université Paris-Saclay; Gif-sur-Yvette 13 avenue des Sciences, 91190, France; E-mail: <u>fathi.moussa@universite-paris-saclay.fr</u>

https://dx.doi.org/10.17179/excli2024-7084

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/4.0/</u>).

Preamble. This supplementary information includes the original official report of the certified European Laboratory that performed the entire study. This includes the details of the experimental procedures and all raw data as well as the legal attestations related to the study. While the study plan also includes C70 and a C60/C70 mixture, only the data concerning C60 must be considered.

TOXI-COOP ZRT.

TOXI-COOP ZRT

Address: Berlini utca 47-49. H-1045 Budapest Hungary Phone: +36-1-920-1228

Study Report

14-Day Repeated Dose Oral Gavage Toxicity Study of Fullerene C60 in Olive Oil in Rats

Study no:

842-400-5742

Study Director: Ilona Pasics Szakonyiné

Date of Study Report: April 14, 2021

(Study Report including Appendices total pages 143)

Sponsor:

SES RESEARCH Inc.

5999 West 34th Street Suite 106 Houston, TX 77079 USA Test facility

Toxi-Coop Zrt. Berlini utca 47-49. H-1045 Budapest Hungary

Table of Contents	Page
-------------------	------

Statement of the Study Director	.6
Statement of the Management	.7
Statement of the Quality Assurance GLP	.8
General statements	
Experimental schedule	10
Responsibilities	
Regulatory guidelines and test methods	
GLP compliance	
Archiving	
1.0 Summary	14
2.0 Study objective and introduction	16
 3.0 Materials and methods	16 16 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 19 20
 3.5.1 Route of administration and reason for the selection	20 20 20 21 21 21 21 21 21 21 21 21
4.5 Body weight and body weight gain	22

4.6 Foc	d consumption measurement and feed efficiency	22
4.7 Clin	nical pathology examinations	22
4.7.1	Hematology	22
4.7.2	Blood coagulation	23
4.7.3	Clinical chemistry	
4.8 Pat	nology	25
4.8.1	Necropsy	25
4.8.2	Organ weight	26
4.8.3	Histopathology	26
5.0 Evalua	tion of experimental data	26
6.0 Anima	l welfare	27
7.0 Amend	ment and deviation to the Study Plan	27
	endment to the Study Plan	
7.2 Dev	viations to the Study Plan	27
8.0 Refere		20
0.0 Kelele	nces	20
	nces	
9.0 Results		29
9.0 Results 9.1 Mo		29 29
9.0 Results 9.1 Mo 9.2 Clin	rtality	29 29 29
9.0 Results 9.1 Mo 9.2 Clin 9.3 Boo	rtality nical observations	29 29 29 29 29
9.0 Results 9.1 Mo 9.2 Clin 9.3 Boo 9.4 Foo	rtality nical observations ly weight and body weight gain	29 29 29 29 29 29
9.0 Results 9.1 Mo 9.2 Clin 9.3 Boo 9.4 Foo 9.5 Fee 9.6 Her	rtality nical observations ly weight and body weight gain d consumption d efficiency natology and blood coagulation	29 29 29 29 30 30
9.0 Results 9.1 Mo 9.2 Clin 9.3 Boo 9.4 Foo 9.5 Fee 9.6 Her	rtality nical observations ly weight and body weight gain d consumption d efficiency	29 29 29 29 30 30
9.0 Results 9.1 Mo 9.2 Clin 9.3 Boo 9.4 Foo 9.5 Fee 9.6 Her 9.7 Clin	rtality nical observations ly weight and body weight gain d consumption d efficiency natology and blood coagulation	29 29 29 29 29 29 29 30 30 30 30
9.0 Results 9.1 Mo 9.2 Clin 9.3 Boo 9.4 Foo 9.5 Fee 9.6 Her 9.7 Clin 9.8 Neo	rtality nical observations ly weight and body weight gain d consumption d efficiency natology and blood coagulation nical chemistry	29 29 29 29 29 29 30 30 30 30
9.0 Results 9.1 Mo 9.2 Clin 9.3 Boo 9.4 Foc 9.5 Fee 9.6 Her 9.7 Clin 9.8 Nec 9.9 Org	rtality nical observations ly weight and body weight gain d consumption d efficiency natology and blood coagulation nical chemistry ropsy	29 29 29 29 29 29 30 30 30 30 31 31
9.0 Results 9.1 Mo 9.2 Clin 9.3 Boo 9.4 Foo 9.5 Fee 9.6 Her 9.7 Clin 9.8 Neo 9.9 Org 9.10 His	rtality nical observations ly weight and body weight gain d consumption d efficiency natology and blood coagulation nical chemistry ropsy an weight	29 29 29 29 29 30 30 30 31 31 31 32
 9.0 Results 9.1 Mo 9.2 Clin 9.3 Boo 9.4 Foo 9.5 Fee 9.6 Her 9.7 Clin 9.8 Neo 9.9 Org 9.10 His 	rtality nical observations	29 29 29 29 29 29 30 30 30 31 31 32 32

Page

Table of Contents of Appendices

APPENDIX 1	1.1 Summary of daily clinical observations
	1.2 Summary of weekly clinical observations
	1.3 Individual daily clinical observations
	1.4 Individual weekly clinical observations
APPENDIX 2	2.1 Summary of body weight and body weight gain2 pages
	2.2 Individual body weight and body weight gain2 pages
APPENDIX 3	3.1 Summary of food consumption
	3.2 Summary of feed efficiency
	3.3 Individual food consumption2 pages
	3.4 Individual feed efficiency
APPENDIX 4	4.1 Summary of hematology and blood coagulation
	4.2 Individual data of hematology blood coagulation2 pages
APPENDIX 5	5.1 Summary of clinical chemistry
	5.2 Individual data of clinical chemistry2 pages
APPENDIX 6	6.1 Summary of necropsy findings
	6.2 Individual necropsy findings
APPENDIX 7	7.1 Summary of organ weight
	7.2 Individual organ weight
APPENDIX 8	8.1 Summary of histopathology findings
	8.2 Individual histopathology findings
APPENDIX 9	Copy of the Certificates of Analysis
APPENDIX 10	Copy of the Health Certificate of animals
APPENDIX 11	Quality control of the diet
APPENDIX 12	Quality control of the drinking water
APPENDIX 13	Copy of the Certificate of Quality of the bedding material 1 page
APPENDIX 14	Historical control data
APPENDIX 15	Copy of the Study Plan
APPENDIX 16	Copy of the Good Laboratory Practice (GLP) Certificate 1 page

The following prints of this report are issued:

Paper prints: Original 1 of 2 Original 2 of 2	Archived at Toxi-Coop Zrt. Released to the sponsor
Electronic copy:	An electronic copy in PDF format is released to the sponsor.
Electronic copy 1 of 1	The electronic file is an unaudited copy, generated after finalization of the report. The sponsor is reminded that PDF files are not sufficiently protected against modification. Therefore, Toxi-Coop Zrt. cannot take any responsibility for the content of the electronic copy. The sponsor is using the electronic copy on his own responsibility.

Statement of the Study Director

This study has been performed in accordance with the study plan and the regulations laid down in the Principles of Good Laboratory Practice (Hungarian Good Laboratory Practice Regulation: 42/2014 (VITI. 19.) EMMI decree of the Minister of Human Capacities which corresponds to the OECD GLP, ENV/MC/CHEM(98)17) except for formulation analysis.

Analytical control of dosing formulations was not performed within the scope of this study because the control and test items were administered in "ready to use" form and the sponsor provided the analytical certificates for each substance.

The following guidelines were taken into account when the study was designed:

- OECD Guidelines for Testing of Chemicals, Section 4 Health Effects; No. 407, *"Repeated Dose 28-Day Oral Toxicity Study in Rodents"* (adopted 03 October 2008)
- US FDA Toxicological Principles for the Safety Assessment of Food Ingredients, Redbook 2000, IV.C. 3. a. *Short-Term Toxicity Studies with Rodents* (2003).

I, the undersigned study director declare that this report constitutes a true record of the actions undertaken and the results obtained in the course of this study.

Signature:

Raboyne Pasis Jlora Ilona Pasics Szakonyiné

Date: April 14, 2021

Statement of the Management

According to the conditions of the research and development assignment between SES RESEARCH Inc. (as Sponsor) and Toxi-Coop Zrt. (as Test Facility) "14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60, C70 - in Rats" has been performed in laboratory of Toxi-Coop Zrt. as a GLP study.

	R	
Signature:	Dr. Gábor Hirka	

Date: April 14, 2021

Statement of the Quality Assurance GLP

Study no:	842-400-5742
Study title:	14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60, C70 - in Rats
Test Items:	Olive Oil infuse with Carbon C60/C70 Olive Oil infuse with Carbon C60 Olive Oil infuse with Carbon C70

This study as well as the final report was inspected by the Quality Assurance in compliance with the Principles of Good Laboratory Practice. This final report reflects the raw data obtained during the performance of the study.

Properly signed reports of the performed inspections were submitted to the study director and to the test facility management. The dates of such inspections and the dates of reporting inspection results are given below.

Date	Phase inspected	Date of report to the study director	Date of report to the management
January 29, 2021	Study Plan	January 29, 2021	January 29, 2021
February 09, 2021	Handling of Test Item	February 09, 2021	February 09, 2021
January 12, 2021	Hematology and blood coagulation (process based)	January 12, 2021	January 12, 2021
September 15, 2020	Clinical chemistry (process based)	September 15, 2020	September 15, 2020
February 01, 02, 08, 09, 2021	Histopathological processing (process based)	February 09, 2021	February 09, 2021
April 09, 2021	Draft Report	April 09, 2021	April 09, 2021
April 14, 2021	Final Report	April 14, 2021	April 14, 2021

Signature:

Anett Szegner Quality Assurance GLP

April 14, 2021 Date

	General statements
Study title:	14-Day Dose Range Finding Oral Gavage Toxicity Study of Fullerene C60 in Olive Oil in Rats
Study number:	842-400-5742
Sponsor:	SES RESEARCH Inc. 5999 West 34th Street Suite 106 Houston, TX 77079 USA
Sponsor's scientific monitor:	John R. Endres, ND Chief Scientific Officer Natural and Medicinal Products Research AIBMR Life Sciences, Inc. 2800 E. Madison St. Suite 202 Seattle WA 98112
Test facility:	Toxi-Coop Zrt. Berlini utca 47-49. H-1045 Budapest Hungary
	Arácsi út 97. H-8230 Balatonfüred, Hungary

Experimental schedule

Date of start of experimental phase: Date of end of in-life phase: Date of end of experimental phase:

Pre-experimental period

Animal arrival: Veterinary control/acclimatization: Animal identification: Body weight measurement: Clinical observations: Randomization:

Experimental period

Treatment period: Body weight measurement: Food consumption measurement:

Clinical observation:

Blood sampling: Necropsy:

Date of Draft Report: Date of Final Report: February 09, 2021 February 23, 2021 April 02, 2021

February 04, 2021 February 04 – 08, 2021 February 04, 2021 February 05, 08, 2021 February 05, 08, 2021 February 08, 2021

February 09 – 22, 2021 February 09, 12, 16, 19, 22, 2021 Before the necropsy: February 23, 2021 February 09, 16, 22, 2021 February 09 – 22, 2021, daily February 09, 16, 23, 2021, weekly February 23, 2021

April 09, 2021 April 14, 2021

Responsibilities	
Test facility management:	Dr. Gábor Hirka Phone: +36-1-920-1228 E-mail: <u>gabor.hirka@toxicoop.com</u>
Study director:	Ilona Pasics Szakonyiné Phone: +36-30-846-2665 E-mail: <u>ilona.pasics@toxicoop.com</u>
Head of Quality assurance unit:	Ildikó Hermann Phone: +36-1-920-1228 E-mail: <u>ildiko.hermann@toxicoop.com</u>
Sponsor's scientific monitor:	John R. Endres, ND Phone: (253) 286-2888 john@aibmr.com http://www.aibmr.com
Histopathology:	Róbert Glávits, D.V.M., Ph.D., D.Sc. Histopathologist
Responsible personnel:	Anett Szegner – QA Anita Mayer – QA Anikó Renkó – clinical pathology

The following additional staff members were involved in the study:

Marcell Madár, Tímea Csörge, Ibolya Bogdán, Irén Somogyi Háriné, Istvánné Horváth, Bálint Zsolt Juhari, Judit Kálmán, Aranka Kiss, Klára Fritz Kovácsné, Máté Madár, Anikó Légrádi-Maurer, Éva Láng-Szabó, Olga Szász, Erika Misku Vargáné

Regulatory guidelines and test methods

The study followed the procedures indicated by the following internationally accepted guidelines and recommendations:

- OECD Guidelines for Testing of Chemicals, Section 4 Health Effects; No. 407,
 "Repeated Dose 28-Day Oral Toxicity Study in Rodents" (adopted 03 October 2008)
- US FDA Toxicological Principles for the Safety Assessment of Food Ingredients, Redbook 2000, IV.C. 3.a. Short-Term Toxicity Studies with Rodents (2003).

GLP compliance

The study was performed according to GLP at the Sponsor's request because of authority purposes. The Principles of Good Laboratory Practice as specified by Hungarian and international legislations were followed (except for formulation analysis):

- Hungarian Good Laboratory Practice Regulation: 42/2014 (VIII. 19.) EMMI decree of the Minister of Human Capacities which corresponds to the OECD GLP, ENV/MC/CHEM(98)17).
- OECD Principles of GLP as revised in 1997, published in ENV/MC/CHEM (98)17);
 OECD, Paris, 1998

All procedures mentioned in the Study Plan are the subject of detailed standard operating procedures (SOPs), which are contained in the SOP manuals of the operating departments of Toxi-Coop Zrt.

The Quality Assurance conducted inspections of the study plan, various phases of the study, certain repetitive operations and the report is audited according to internal Standard Operating Procedures.

Archiving

The study documents and samples as listed below are archived according to the OECD GLP and to the Toxi-Coop Zrt.'s SOP-s in the archives of Toxi-Coop Zrt. Berlini utca 47-49. H-1045 Budapest, Hungary:

- the Study Plan for 15 years,
- one original Final Report for 15 years,
- one sample of the test item for 5 years,
- all raw data for 15 years,
- biological samples for 5 or 12 years,
 - organs and tissues preserved in 4 % buffered formaldehyde solution for 5 years
 - blocks and slides of organs and tissues for 12 years
- correspondence for 15 years,

For the first 5 years, archiving is included. Thereafter archiving occurs at additional costs of the Sponsor. After this period, the Sponsor will be notified to decide on further archiving to comply with current legal requirements.

After the retention time, all the archived materials listed above will be returned to the Sponsor or retained for a further period if agreed by a contract or destroyed on their behalf. None of the above cited documents or material will be discarded without the explicit written consent of the Sponsor.

At the end of the study, any remaining test item will be returned to the Sponsor or will be discarded, unless otherwise instructed by the Sponsor.

1.0 Summary

The objective of this study was to obtain first information on the toxic potential of fullerene C60, test item Olive Oil infuse with Carbon C60 in the groups of male and female rats likely to arise from repeated exposure to the test item over a 14-Day repeat-dose test period.

Four groups of Han:WIST rats consisting of five animals per group and sex were administered orally (by gavage) once daily with EVO Olive Oil (0 mg/mL fullerene), and Olive Oil Infuse with Carbon C60 (3.8 mg/kg bw/day, 0.76 mg/mL) approximately at a dose 4 mg/kg bw/day and at a concentration of 0.8 mg/mL, corresponding to a dosing volume of 5 mL/kg bw, for each group.

Analytical control of dosing formulations was not performed within the scope of this study as each substance was administered in "ready to use" form and the sponsor provided the analytical certificate for control and test items.

Animals were observed twice and the body weight was determined twice for each animal during the acclimatization period.

Animals were observed for mortality twice a day during the course of the study. General clinical observations were performed daily after the treatment and detailed clinical observations were conducted on Days 0, 7 and 14. Body weights were recorded twice weekly. The food consumption was determined weekly to coincide with body weight measurements during the study. Feed efficiency was calculated by weekly interval. Clinical pathology and gross pathology examinations were conducted on all animals one day after the last treatment on Day 14 (male and female). Selected organs were weighed. Full histopathological examinations were performed on all animals of the control and test item treated groups (Groups 1, 2, 3 and 4).

The results of this study were summarized as follows:

Mortality: There was no mortality in any groups.

Clinical observations: Test item related clinical signs were not detected in male or female animals in any group – control, and Olive Oil infuse with Carbon C60. The animals exhibited normal behavior and physical condition in all groups at the daily and weekly clinical observations.

Body weight and body weight gain: The body weight development was not affected by the treatment of test items. The body weight and body weight gain were comparable in all groups.

Food consumption and feed efficiency: The mean daily food consumption and feed efficiency were similar in male and female in the control and all test items treated groups.

Hematology and blood coagulation: Test items related adverse effects were not identified in the examined hematological parameters in the male or female animals in any groups Olive Oil infuse with Carbon C60 with respect to their control.

Clinical chemistry: Pathological test items effects were not detected upon the evaluation of the clinical chemistry parameters in groups of Olive Oil infuse with Carbon C60.

Gross pathology: Specific macroscopic alterations indicative of test item effects were not observed in the organs and tissues of animals in any dosed groups.

Organ weight: Test item related effects were not detected in the weights of the examined organs in male or female animals in any test item administered dose groups.

Histopathology: No microscopic lesions related to test item were detected in any organs or tissues of animals subjected to histopathological examination (male and female) in groups of Olive Oil Infuse with Carbon C60 approximately at an approximately dose of 4 mg/kg bw/day

Conclusion

Under the condition of the present study, the fullerene C60 in Olive Oil caused no adverse effects in male or female Han:WIST rats after the consecutive 14-day oral (by gavage) administration at approximately 4 mg/kg bw/day dose.

Based on the observations made in this toxicity study the No Observed Adverse Effect Level (NOAEL) was determined for Olive Oil infuse with Carbon C60 as follows:

NOAEL: 4 mg/kg bw/day – male Han:WIST rats. NOAEL: 4 mg/kg bw/day – female Han:WIST rats.

2.0 Study objective and introduction

The objective of this study was to obtain first information on the toxic potential of fullerene C60 i.e, test item Olive Oil infuse with Carbon C60 in male and femalerats likely to arise from repeated exposure to the test item over a 14-day repeat-dose test period.

3.0 Materials and methods

3.1 Test items

3.1.1 Characteristics of test items

Name of test item: Product Code: Lot#: Fullerene (C60) content: Relative density: Appearance: Odor: Manufacturing date: Expiry date: Storage conditions: Olive Oil infuse with Carbon C60 SE20-142 V01561 830 mg/kg 0.91 g/mL Reddish-brown- liquid Faint oil odor April 17, 2020 April 17, 2023 At room temperature

3.1.2 Identification, receipt

The test item of a suitable chemical purity, analytical certificate, safety data sheet and specification of the product was supplied by the Sponsor.

All precautions required in the handling and disposal of the test item was outlined by the Sponsor. Identification of test item was made in Toxi-Coop Zrt. on the basis of the information included in the analytical certificate (see Appendix 9) and MSDS.

3.1.3 Formulation

Formulation of the test items was not necessary. The fullerene (Olive Oil infuse with Carbon C60 as well as the control item (EVO Olive Oil) were provided by the Sponsor in "ready to use" form.

3.1.4 Concentration check of the formulated test item

Analytical control of dosing formulations was not performed within the scope of this study. The control and test items were applied in "ready to use" form and the sponsor provided the analytical certificates for each substance.

3.2 Control item

Name:	EVO Olive Oil
Product Code:	SE20-EVOO
Lot#:	V100
Appearance:	Golden-greenish liquid
Odor:	Faint oil odor
Manufacturing date:	April 17, 2020
Expiry date:	April 17, 2023
Storage conditions:	At room temperature

3.3 Characteristics of anesthetic

urane CP [®]
0G19A
2024
icus Partner Kft.
Biatorbágy, Tormásrét u. 12.
gary
w 30 °C
sthesia during the blood collection and euthanasia

3.4 Test system

3.4.1 Animals

Species / Strain:	Han:WIST rat of Wistar origin
Source:	Toxi-Coop Zrt. 1103 Budapest, Cserkesz u. 90.

Hygienic level:	SPF (Specific pathogen-free) at arrival and kept in good conventional environment during the study.
Age of animals:	Male animals: 42 – 45 days,
-	Female animals: $41 - 43$ days at start of the treatment;
Body weights:	170 - 184 g for male animals and
	124 - 140 g for female animals at start of the treatment;
	The weight variation did not exceed ± 20 percent of the mean
	weight.
Number and sex of animals	: 20 rats (10 male and 10 female - nulliparous and non-pregnant
	animals)
Number of groups:	2 (1 test item treated groups + 1 control group)
Number of animals/groups	: 10 (5 male; 5 female)
Animal health:	Only healthy animals were used for the study. Healthy status
	was certified by the breeder (Appendix 10).
Acclimatization time:	5 days

3.4.2 Reason for selection of species

The rat is commonly used species for toxicological studies in accordance with international recommendations.

The Wistar rat was the system of choice because it has been the preferred and mostcommonly used species for oral toxicity tests is a well-known laboratory model with sufficient historical data.

3.4.3 Husbandry

3.4.3.1 Housing conditions

Animal room no.:	18/1 and 18/2
Housing:	Individual caging
Cage type:	Type III polypropylene/polycarbonate
Bedding:	Certified laboratory wood bedding (SAFE 3/4-S-FASERN
	produced by J. Rettenmaier & Söhne GmbH+Co.KG; D-73494
	Rosenberg Holzmühle 1 Germany; see Appendix 13). The cages
	and bedding were changed once or twice a week.
Illumination:	Artificial light, from 6 a.m. to 6 p.m. (except days of
	ophthalmology examinations)
Temperature:	$22 \pm 3 \text{ °C}$
Relative humidity:	30 - 70 %
Ventilation:	Above 10 air-exchanges/ hour by central air-condition system.

Environmental conditions were maintained by an air-condition system. Temperature and relative humidity were verified and recorded daily during the study.

3.4.3.2 Food and water supply

Animals received ssniff[®] SM R/M-Z+H complete diet for rats and mice produced by ssniff Spezialdiäten GmbH, D-59494 Soest Germany and tap water, as for human consumption, *ad libitum* except overnight food deprivation before the blood sampling. The food was considered not to contain any contaminants that could reasonably be expected to affect the purpose or integrity of the study. The supplier provided an analytical certificate of the standard diet for the batch used. Contents of the standard diet for rats and mice guaranteed by the supplier are presented in Appendix 11.

Animals received tap water from watering bottles. Water quality control analysis and microbiological assessment are performed once in every six months by Government Office of Capital Budapest Department of Public Health and Medical Officer Service (Váci út 172-174. Budapest, H-1138 Hungary). The quality control results are available at Toxi-Coop Zrt.'s archives (see Appendix 12).

3.4.4 Identification of animals

Animals were identified by unique numbers. The individual identification was performed by a marker pen on the tail. Identification numbers were given for each animal on the basis of the master file of Toxi-Coop Zrt. and numbers were re-marked as necessary to ensure correct identification.

According to allocation into the treatment groups after randomization, animal numbers were as follows:

GROUPS	DOSE (mg/kg bw/day)	MALES	FEMALES
Group 1	0	9656	9681
		9657	9691
		9658	9697
		9662	9698
		9673	9701
Group 2	600	9655	9684
		9660	9689
		9666	9690
		9672	9692
		9679	9695

 Table 1: Identification numbers of animals per groups

The cages were marked by identity cards, with information about the study number, control or test item name, group number, serial number of test item, sex, cage number and individual animal numbers, start of the treatment, date of the necropsy. Boxes were arranged in such a way that possible effects due to cage placement are minimized.

3.5 Experimental design

3.5.1 Route of administration and reason for the selection

The test item was administered orally via gavage. The route of application was selected in compliance with international guidelines (See references in paragraph "Regulatory guidelines and test methods"). The oral route is the anticipated route of human exposure to the test item.

3.5.2 Randomization

Animals were randomly assigned to test groups. All animals were sorted according to body weight by computer and grouped according to weight ranges. There were an equal number of animals from each weight group in each of the experimental groups during the randomization.

The grouping was controlled by SPSS/PC+ computer program according to the actual body weight verifying the homogeneity and deviations among the groups.

3.5.3 Dose levels

A control and one dose groups were involved in the study. Table below contains the group number, doses, dosing volume and number of animals.

Group	Name and	Dose††			Number of animals	
number	concentration † of control or test items	(mg/kg bw/day)	(mL/kg bw)	Male	Female	
Group 1	EVO Olive Oil 0 mg/mL	0	5	5	5	
Group 2	Olive Oil Infuse with Carbon C60 0.76 mg/ml	4 (3.8)	5	5	5	

Table 2: Experimental design

† Concentrations by C60;

 $\dagger \dagger Doses$ calculated by C60 concentration, respectively. Animals in

Group 1 only received the control item, EVO Olive Oil.

3.5.4 Justification of dose level selection

The Sponsor, in consultation with the Study Director, selected the dose levels to target approximate exposures of 0 and 4 mg/kg bw/day of control and test item C60.

3.6 Duration of the experimental period

The experimental period involved 5 days of acclimatization, 14 days treatment and observation periods and necropsy on the following day (Day 14). The day of first treatment is considered as Day 0 of examination.

4.0 Description of the test procedure

4.1 Selection of animals

Twenty (20) healthy rats (ten males and ten females) were used in the study. Animals were selected for this study on the basis of adequate body weight, a body weight within \pm 20% of the mean within a sex and free from clinical signs of disease or injury. Selected rats were distributed by randomization according to stratification by body weight so that there was no statistically significant difference among group body weight means within a sex.

4.2 Administration of test item

The control and test item were administered to the appropriate animals by once daily oral gavage approximately the same time each day morning within a 2-3 hours period from Day 0 up to Day 13 (for a period of 14 days).

The actual treatment volume was calculated according to the most recent body weight. Animals were not treated on the day of gross pathology.

A treatment volume of 5 mL/kg body weight was applied to animals of each group.

4.3 Mortality

Animals were inspected for signs of morbidity and mortality twice daily (at the beginning and end of each working day). There was no early death during the course of the study.

4.4 Clinical observations

General clinical observations were made cage-side once a day, after treatment at approximately the same time.

On the day prior to the first treatment with the test item, and approximately once weekly thereafter, detailed observations were conducted while handling the animal on days that the animals are weighed and food consumption measurements are taken. Potential signs noted included but were not limited to: changes in skin, fur, eyes, and mucous membranes, occurrence of secretions and excretions and autonomic activity (e.g., lacrimation, piloerection, pupil size, and unusual respiratory pattern).

Likewise, changes in gait, posture and response to handling as well as the presence of clonic or tonic movements, stereotype activities (e.g., excessive grooming, repetitive circling), or bizarre behavior (e.g., self-mutilation, walking backwards) were considered. All observations were recorded.

4.5 Body weight and body weight gain

Individual body weights were recorded twice during the acclimation. The body weight of animals involved in the study was determined on Day 0 (prior to study start) and twice weekly (i.e., on Days 0, 3, 7, 10 and 13) with a precision of 1 g. The animals were also weighed immediately prior to sacrifice in order to calculate organ to body weight ratios. Individual body weight changes were calculated according to the days of measurements and for the study overall.

4.6 Food consumption measurement and feed efficiency

Food consumption was determined with the measurement of given and non-consumed diet with an accuracy of 1 g once weekly to coincide with body weight measurements (Days 0, 7 and 13). Food consumption was evaluated and reported by weekly interval for each group. Feed efficiency was calculated and reported. Feed efficiency was calculated on the basis of the weekly body weight gain and food consumption.

All animals were fasted overnight prior to blood sampling.

4.7 Clinical pathology examinations

Clinical pathology examinations – including hematology, blood coagulation and clinical chemistry – were conducted at termination of the treatment (i.e., one day after the last treatment; on Day 14; male and female).

Animals were food deprived overnight (for approximately 16 hours) prior to blood collection. Blood samples were harvested from the retro orbital venous plexus under Isoflurane CP[®] anesthesia.

Three samples were taken from each animal: one for hematology, one for determination of blood clotting times and the third one to obtain serum samples for clinical chemistry.

4.7.1 Hematology

Blood samples for hematology measurements were collected in tubes containing K₃EDTA (spray-dried; MiniCollect[®] 0.5 mL, manufactured by Greiner Bio-One International AG, Kremsmünster, Austria) and tubes were filled up to the final volume marked on the tubes. Analysis was performed immediately after sampling.

The parameters listed in Table 3 were measured by Siemens ADVIA120:

PARAMETERS	UNIT	METHODS
WBC White Blood Cell (leukocyte) count	10 ⁹ /L (G/L)	Flow cytometry method
RBC Red Blood Cell (erythrocyte) count	10 ¹² /L (T/L)	Flow cytometry method

 Table 3: Hematology parameters examined

PARAMETERS	UNIT	METHODS
HGB Hemoglobin concentration	g/L	Cyanide-colorimetric hemoglobin method
HCT Hematocrit (relative volume of erythrocytes)	L/L	Computed by equipment
MCV Mean Corpuscular (erythrocyte) Volume	fL	Flow cytometry method
MCH Mean Corpuscular (erythrocyte) Hemoglobin	pg	Computed by equipment
MCHC Mean Corpuscular (erythrocyte) Hemoglobin Concentration	g/L	Computed by equipment
PLT Platelet (thrombocyte) count	10 ⁹ /L (G/L)	Flow cytometry method
RET Reticulocytes,	%	Flow cytometry method
Differential white blood cell count†	%	Peroxidase and basophil/ lobularity method

Table 3: Hematology parameters examined

* NEU: Neutrophil granulocytes (%); LYM: Lymphocytes (%); EOS: Eosinophil granulocytes; (%); MONO: Monocytes (%); BASO: Basophil granulocytes (%);

4.7.2 Blood coagulation

Blood samples for determination of blood clotting times (APTT and PT) were collected in tubes containing 9NC Coagulation 3.8 % (MiniCollect[®] 1 mL; manufactured by Greiner Bio-One International AG, Kremsmünster, Austria). Tubes were filled up to the final volume marked on the tubes.

Blood was centrifuged at 2500 rpm for 15 minutes within 20 - 30 minutes after the sampling and supernatant plasma samples were measured immediately.

The following parameters were measured by AMAX Destiny Plus:

 Table 4: Blood coagulation parameters examined

PARAMETERS	UNIT	METHODS
APTT Activated partial Thromboplastin Time	sec	Optical
PT Prothrombin Time	sec	Optical

4.7.3 Clinical chemistry

Blood samples collected for clinical chemistry measurements were drawn in tubes Vacuette 2.5 mL Z Serum Sep C/A (no anticoagulant; manufactured by Greiner Bio-One International AG, Kremsmünster, Austria). At least 1.0 mL blood was collected into clinical chemistry tubes. Samples were stored in a dark place at room temperature for 30-40 minutes and then centrifuged at 4500 rpm for 15 minutes. Serum samples were stored at 2-8 °C and measured.

The following parameters were measured in all animals by Cobas C311:

PARAMETERS	UNIT	METHODS
ALT Alanine Aminotransferase activity	U/L	IFCC recommended (with P-5'-P), 3-reagent system
AST Aspartate Aminotransferase activity	U/L	IFCC recommended (with P-5'-P), 3-reagent system
GGT Gamma Glutamyl transferase activity	U/L	IFCC recommended enzymatic method
ALP Alkaline Phosphatase activity	U/L	IFCC (AMP) 2-Amino-2-metyl-1- propanol
TBIL Total Bilirubin concentration	µmol/L	Colorimetric diazo method (NBD: <i>p</i> - <i>nitrobenzene-diazonium</i>)
CREA Creatinine concentration	µmol/L	Enzymatic method
UREA Urea concentration	mmol/L	Urease-GLDH method
GLUC Glucose concentration	mmol/L	Hexokinase method
CHOL Cholesterol concentration	mmol/L	Enzymatic CHOD-POD method
Pi Inorganic phosphate concentration	mmol/L	Ammonium-molybdate
Ca ⁺⁺ Calcium concentration	mmol/L	(NM-BAPTA)-EDTA method
Na⁺ Sodium concentration	mmol/L	Potentiometric test (Direct ISE)
K ⁺ Potassium concentration	mmol/L	Potentiometric test (Direct ISE)
Cl ⁻ Chloride concentration	mmol/L	Potentiometric test (Direct ISE)
ALB Albumin concentration	g/L	Colorimetric - BCG (Bromocresol green) - method
TPROT Total Protein concentration	g/L	Colorimetric – Biuret - method
A/G Albumin/globulin ratio	-	Calculated value

4.8 Pathology

4.8.1 Necropsy

Gross pathology was performed on every experimental animal one day after the last treatment on Day 14 of the study.

Animals were anesthetized with Isoflurane CP[®] and were exsanguinated from the abdominal aorta after verification of narcosis.

The external appearance (surface of the body, all orifices) was examined, cranium, thoracic and abdominal cavities were opened and the appearance of the tissues and organs was observed macroscopically. All observations were recorded with details of the location, color, shape and size.

The following organs/tissues were removed and preserved in 4 % formaldehyde solution, except for testes and epididymides, which were preserved in modified Davidson solution and then stored in 4 % formaldehyde solution for histopathological examination:

Adrenal glands
Aorta (thoracic and abdominal)
Bone with joint and marrow (femur)
Brain (representative regions: cerebrum, cerebellum and pons and medulla oblongata)
Esophagus
Eyes (lachrymal gland with Harderian glands)
Heart
Kidneys
Large intestines (caecum, colon, rectum)
Liver
Lungs (with main stem bronchi; inflation with fixative and then immersion;)
Lymph nodes (submandibular, mesenteric)
Mammary gland
Muscle (quadriceps)
Nasal turbinates
Pancreas
Pituitary
Salivary glands (submandibular)
Sciatic nerve
Sexual organs (testes, epididymides, prostate, seminal vesicle with coagulating gland, ovaries, uterus with cervix and oviduct, vagina)
Skin
Small intestines (duodenum, ileum, jejunum; including Peyer's patches)
Spinal cord (at three levels: cervical, mid-thoracic and lumbar)
Spleen
Sternum
Stomach
Thymus
Thyroid + parathyroid
Trachea
Urinary bladder

Table 6: List of organs preserved

Thyroid and parathyroid were preserved together with larynx but larynx was not processed histologically.

Organs and tissues were excised, trimmed of any adherent tissue, as appropriate, weighed, and preserved as described above.

4.8.2 Organ weight

The following organs were weighed and recorded:

With precision of 0.01g: Liver, kidneys, testes, epididymides, prostate, seminal vesicles with coagulating glands as a whole, uterus and fallopian tubes, thymus, spleen, brain and heart.
With precision of 0.001g: Adrenal glands, ovaries

Paired organs were weighed together.

4.8.3 Histopathology

Full histological examinations were performed on the preserved organs and tissues of the animals from both the control and test item administered groups (Groups 1, and 2).

The fixed tissues were trimmed, processed, embedded in paraffin, sectioned with a microtome (at a thickness of 2-4 μ m) placed on glass microscope slides, stained withhematoxylin and eosin and examined by light microscopy.

5.0 Evaluation of experimental data

Statistical analysis was done with SPSS PC+ software for the following data:

- Body weight
- Food consumption
- Feed efficiency
- Hematology
- Blood coagulation
- Clinical chemistry
- Organ weight

The heterogeneity of variance between groups was checked by Bartlett's homogeneity of variance test. Where no significant heterogeneity was detected, a one-way analysis of variance was carried out. If the obtained result was positive, Duncan's Multiple Range test was used to assess the significance of inter-group differences.

Where significant heterogeneity was found, the normal distribution of data was examined by Kolmogorov-Smirnov test. In case of a non-normal distribution, the non-parametric method of Kruskal-Wallis One-Way analysis of variance was used. If there was a positive result, the inter-group comparisons were performed using the Mann-Whitney U-test.

Frequency of clinical signs, pathological and histopathological findings by sex and dose was calculated.

The use of the word "significant" or "significantly" indicates a statistically significant difference between the control and the experimental groups. Significance was judged at a probability value of p < 0.05 and < 0.01. Male and female rats were evaluated separately.

6.0 Animal welfare

Institutional Animal Care and Use Committee (IACUC) of Toxi-Coop Zrt. permitted the conduct of the study by signature on the Study Plan. (SOP: ALT 023 - Instructions for animal protection)

The study was conducted according to the National Research Council. Guide for the Care and Use of Laboratory Animals and in compliance with the principles of the Hungarian Act 2011 CLVIII (modification of Hungarian Act 1998 XXVIII) and Government Decree 40/2013 regulating animal protection.

7.0 Amendment and deviation to the Study Plan

7.1 Amendment to the Study Plan

The Study Plan was not amended during the course of the study.

7.2 Deviations to the Study Plan

Item 1:	Experimental schedule
In the Study Plan:	Veterinary control/acclimatization: February 04 – 22, 2021
	Body weight measurement: February 05 – 22, 2021
	Clinical observations: February 05 – 22, 2021
Deviation:	Veterinary control/acclimatization: February 04 – 8, 2021
	Body weight measurement: February 05 and 08, 2021
	Clinical observations: February $05 - 8, 2021$
Reason for the deviation:	Unrealized typographical errors regarding the date of the
	end of the pre- treatment period in the Study Plan.
Presumed effect on the study:	None.

8.0 References

- OECD Principles of Good Laboratory Practice, adopted by Council on 26th November 1997; Environment Directorate, Organization for Economic Cooperation and Development, Paris 1998. (OECD Principles of GLP as revised in 1997, published in ENV/MC/CHEM (98)17); OECD, Paris, 1998)
- 2) Hungarian Good Laboratory Practice Regulation: 42/2014 (VIII. 19.) EMMI decree of the Minister of Human Capacities which corresponds to the OECD GLP, ENV/MC/CHEM(98)17).
- 3) OECD Guidelines for Testing of Chemicals, Section 4 Health Effects; No. 407, *"Repeated Dose 28-Day Oral Toxicity Study in Rodents"* (adopted 03 October 2008)
- 4) US FDA Toxicological Principles for the Safety Assessment of Food Ingredients, Redbook 2000, IV.C. 3. a. *Short-Term Toxicity Studies with Rodents* (2003).
- 5) National Research Council. Guide for the Care and Use of Laboratory Animals. Inst. Lab. Anim. Res., Comm. Life Sci., Natl. Acad. Press, 8th Edition, Washington, D.C., 2011.

9.0 Results

9.1 Mortality

There was no mortality at any of the tested groups – EVO Olive Oil (control), Olive Oil infuse with Carbon C60 – during the entire observation period.

(Appendices 1.1 and 1.2)

9.2 Clinical observations

Test item related clinical signs were not detected in animals of any groups (during the daily or weekly clinical observations.

Male animals in the control, Olive Oil infuse with Carbon C60 treated groups were symptomfree during the entire observation period.

There were no clinical signs in female animals in the control and Olive Oil infuse with Carbon C60 treated groups at the daily or at the detailed weekly clinical observations. The behavior and physical condition of these animals were considered to be normal at each dose level during the course of the 14-day observation period.

(Appendices 1.1, 1.2, 1.3 and 1.4)

9.3 Body weight and body weight gain

The body weight development was undisturbed in male and female animals in each group.

The mean body weight was comparable with their control in male and female animals in groups of Olive Oil infuse with Carbon C60 during the entire study.

(Appendices 2.1 and 2.2)

9.4 Food consumption

The mean daily food consumption was not affected by the fullerene treated groups – Olive Oil infuse with Carbon C60.

Statistical significance with respect to the control was detected at the slightly lower mean food consumption of male animals administered with Olive Oil infuse with Carbon C60 on week 2. This difference to control was minor therefore was considered to be toxicologically not relevant.

(Appendices 3.1 and 3.3)

9.5 Feed efficiency

The feed efficiency was comparable in male and female animals in the control and test item (Olive Oil infuse with Carbon C60) administered groups during the entire study.

(Appendices 3.2 and 3.4)

9.6 Hematology and blood coagulation

Test items related adverse effects were not identified in the examined hematological or blood coagulation parameters in the male or female animals in groups of Olive Oil infuse with Carbon C60.

(Appendices 4.1 and 4.2; historical control data are presented in Appendix 14)

9.7 Clinical chemistry

Specific pathologic changes were not detected in the examined clinical chemistry parameters.

Slightly lower mean concentration of glucose (GLUC) was detected in male animals in group 2 (Olive Oil infuse with Carbon C60).

In the female animals, the examined clinical chemistry parameters were comparable with the control in group 2 (Olive Oil infuse with Carbon C60).

These statistically significant differences with respect to the control in were probably not related to the test item. The glucose levels of male animals in group 2 remained well within the historical control range. Therefore, these minor changes were judged to be indicative of biological variation and not related to the test item.

(Appendices 5.1 and 5.2; historical control data are presented in Appendix 14)

9.8 Necropsy

Fullerene C60 in Olive Oil did not induce specific macroscopic alterations in the tissues or organs of male or female animals.

Species specific changes (scar on the skin, pyelectasia, hydrometra and cyst in the uterus) and individual lesions (thymic hemorrhage, reddish-brown spot on the lung lobe) were detected in male and female animals as follows:

- lungs: hemorrhage: 1/5 female in group 2 Olive Oil infuse with Carbon C60;
- hemorrhage in the thymus: 1/5 male in control group; 1/5 female in group 2 Olive Oil infuse with Carbon C60;
- right or both sided pyelectasia:
 1/5 female in control group;
- moderate hydrometra: 1/5 female in control group; and 1/5 female in group 2 Olive Oil infuse with Carbon C60;

The thymic hemorrhage and pulmonary findings were probably due to the exsanguination procedure and are frequently observed in experimental rats.

Pyelectasia is a common observation in experimental rats of this strain occurring also in not treated animals. This finding was observed in all dosed groups without any dose relevance.

Hydrometra related to the female sexual cycle, is a frequent observation in experimental rats.

In the lack of related histopathological alterations (inflammatory, necrotic or other pathological lesions) these findings were considered to be toxicologically not relevant in the present study.

(Appendices 6.1 and 6.2)

9.9 Organ weight

There were no test item related changes in the weights of the examined organs in the male or female animals in group of Olive Oil infuse with Carbon C60.

There were no statistically or biologically significant differences with respect to the control in the mean weight of the examined organs in male and female animals at the end of the 14-day observation period.

(Appendices 7.1 and 7.2; historical control data are presented in Appendix 14)

9.10 Histopathology

Histopathological examination did not reveal specific microscopic alterations related to the test item in the examined organs or tissues of animals (male or female).

The alveolar emphysema and the acute hemorrhages in the thymus and lungs occurred sporadically in control and treated animals (emphysema: 1/5 female in group 2; acute hemorrhage in the thymus 1/5 male in control group and 1/5 female in group 2; acute hemorrhage in the lungs: 1/5 female in group 2). These findings could be in connection with the hypoxia, dyspnea and circulation disturbance, developed during the exsanguinations.

The pyelectasia (one or both side) without other histological lesions (degeneration, inflammation, fibrosis etc.) is considered, as slight individual findings without pathological significance in laboratory rats and was observed in 1/5 female animals of the control group.

The dilatation of uterine horns in some female animals -2/5 control and 1/5 in group 2 is a slight neuro-hormonal phenomenon in connection with the sexual function (pro-estrus phase) of the inner genital organs.

No morphological evidence of acute or subacute injury (degeneration, proliferation, inflammation, necrosis etc.) of the gastrointestinal tract, liver, pancreas, cardiovascular system, urinary system, lymphoid system, hematopoietic system, the skeleton, the muscular system, the male and female reproductive system or the central, or peripheral nervous system, the eyes, the lachrymal glands and the integumentary system was observed.

The structure and the cell morphology of the endocrine glands were identical in the control and treated animals.

(Appendices 8.1 and 8.2)

10.0 Conclusion

Under the condition of the present study, fullerene C60 in Olive Oil caused no adverse effects in male or female Han:WIST rats after the consecutive 14-day oral (by gavage) administration at approximately 4 mg/kg bw/day dose.

Based on the observations made in this toxicity study the No Observed Adverse Effect Level (NOAEL) was determined for Olive Oil infuse with Carbon C60 as follows:

NOAEL: 4 mg/kg bw/day – male Han:WIST rats.

NOAEL: 4 mg/kg bw/day – female Han:WIST rats.

Abbreviations

Ad libitum	at will	
APP.	Appendix	
Bw/bw	Body weight	
°C	Degrees centigrade	
CD	Compact disk	
GLP	Good Laboratory Practice	
h	hour	
mL	Milliliter	
μg	Microgram	
g	Gram	
kg	Kilogram	
Ltd	Limited Liability Corporation/Company	
mg	Milligram	
cm	Centimeter	
Zrt.	Zártkörűen működő Részvénytársaság (Private Limited Company)	
h	Hour(s)	
min.	Minute(s)	
N or n	Size of a statistical population	
no	Number	
OECD	Organisation for Economic Co-operation and Development	
PDF	Portable Document Format	
PhD	Doctor of Philosophy	
PLtd. Co	Public Limited Company	
Ref	Reference	
QA	Quality Assurance	
QC	Quality Control	
RT	Room temperature	
SOP	Standard Operating Procedures	
SPF	Specific Pathogen Free	
u	Utca (street)	
%	Percentage	
±	Plus/minus	

Abbreviations of clinical pathology parameters are explained in paragraph 4.7 of this report.

APPENDICES

APPENDIX 1.1 Summary of daily clinical observations Male

Observations	Control	4 (3.8) mg/kg bw/day
	EVO Olive Oil	Olive Oil Infuse wit Carbon C60
Normal	5/5	5/5
Thin faces	0/5	0/5
Skin: Scars - left ear, neck	0/5	0/5

Remark: Frequency of observations: number of animals with observation/number of animals examined

APPENDIX 1.2 Summary of daily clinical observations Female

Observations	Control	4 (3.8)	
	EVO Olive Oil	mg/kg bw/day Olive Oil Infuse wit Carbon C60	
Normal	5/5	5/5	

APPENDIX 1.2 Summary of weekly clinical observations Male

Day of observations	Observations	Control	4 (3.8) mg/kg bw/day
		EVO Olive Oil	Olive Oil Infuse wit Carbon C60
Day 0	Normal	5/5	5/5
Day 7	Normal	5/5	5/5
Day 14	Normal Skin: Scars - left ear, neck	5/5 0/5	5/5 0/5

APPENDIX 1.2 Summary of weekly clinical observations Female

Day of observations	Observations	Control	4 (3.8) mg/kg bw/day	
		EVO Olive Oil	Olive Oil Infuse wit Carbon C60	
Day 0	Normal	5/5	5/5	
Day 7	Normal	5/5	5/5	
Day 14	Normal	5/5	5/5	

APPENDIX 1.3 Individual daily clinical observations Male

Group	Animal	Observations	Duration	Frequency		
number			of observations	of observations		
Control	9656	Normal	Day 0 - Day 13	14		
EVO Olive Oil	9657	Normal	Day 0 - Day 13	14		
	9658	Normal	Day 0 - Day 13	14		
	9662	Normal	Day 0 - Day 13	14		
	9673	Normal	Day 0 - Day 13	14		
4 (3.8)	9655	Normal	Day 0 - Day 13	14		
mg/kg bw/day	9660	Normal	Day 0 - Day 13	14		
Olive Oil Infuse with	9666	Normal	Day 0 - Day 13	14		
Carbon C60	9672	Normal	Day 0 - Day 13	14		
	9679	Normal	Day 0 - Day 13	14		

APPENDIX 1.3 Individual daily clinical observations Female

Group	Animal	Observations	Duration	Frequency		
	number		of observations	of observations		
Control	9681	Normal	Day 0 - Day 13	14		
EVO Olive Oil	9691	Normal	Day 0 - Day 13	14		
	9697	Normal	Day 0 - Day 13	14		
	9698	Normal	Day 0 - Day 13	14		
	9701	Normal	Day 0 - Day 13	14		
4 (3.8)	9684	Normal	Day 0 - Day 13	14		
mg/kg bw/day	9689	Normal	Day 0 - Day 13	14		
Olive Oil Infuse with	9690	Normal	Day 0 - Day 13	14		
Carbon C60	9692	Normal	Day 0 - Day 13	14		
	9695	Normal	Day 0 - Day 13	14		

APPENDIX 1.4 Individual weekly clinical observations Male

Group	Animal number	Observations	ervations Day of observations			
Control	9656	Normal	Day 0, Day 7, Day 14	3		
EVO Olive Oil	9657	Normal	Day 0, Day 7, Day 14	3		
	9658	Normal	Day 0, Day 7, Day 14	3		
	9662	Normal	Day 0, Day 7, Day 14	3		
	9673	Normal	Day 0, Day 7, Day 14	3		
4 (3.8)	9655	Normal	Day 0, Day 7, Day 14	3		
mg/kg bw/day	9660	Normal	Day 0, Day 7, Day 14	3		
Olive Oil Infuse with	9666	Normal	Day 0, Day 7, Day 14	3		
Carbon C60	9672	Normal	Day 0, Day 7, Day 14	3		
	9679	Normal	Day 0, Day 7, Day 14	3		

APPENDIX 1.4 Individual weekly clinical observations Female

Group	Animal number	Observations	Day of observations	Frequency of observations
Control	9681	Normal	Day 0, Day 7, Day 14	3
EVO Olive Oil	9691	Normal	Day 0, Day 7, Day 14	3
	9697	Normal	Day 0, Day 7, Day 14	3
	9698	Normal	Day 0, Day 7, Day 14	3
	9701	Normal	Day 0, Day 7, Day 14	3
4 (3.8)	9684	Normal	Day 0, Day 7, Day 14	3
mg/kg bw/day	9689	Normal	Day 0, Day 7, Day 14	3
Olive Oil Infuse with	9690	Normal	Day 0, Day 7, Day 14	3
Carbon C60	9692	Normal	Day 0, Day 7, Day 14	3
	9695	Normal	Day 0, Day 7, Day 14	3

APPENDIX 2.1 Summary of body weight and body weight gain Male

Croup			Body w	eight (g)	on days		Body weight (g) between days				
Group		0	3	7	10	13	0-3	3-7	7-10	10-13	0-13
Control EVO Olive Oil	Mean SD n	178.0 4.8 5	197.4 4.4 5	224.4 6.3 5	242.4 6.5 5	258.6 8.4 5	19.4 1.5 5	27.0 2.7 5	18.0 4.6 5	16.2 2.8 5	80.6 5.7 5
4 (3.85) mg/kg bw/day Olive Oil infused with C60	Mean SD n %	178.0 6.1 5 0	198.4 6.5 5 1	222.0 9.5 5 -1	237.6 10.0 5 -2	250.2 12.8 5 -3	20.4 3.0 5	23.6 3.4 5	15.6 1.1 5	12.6 4.2 5	72.2 8.9 5
		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

REMARKS: ±% = Percent Deviation Versus Control

NS = Not Significant

* = p < 0.05** = p < 0.01U = Mann-Whitney U - test Versus Control DN = Duncan's multiple range test

APPENDIX 2.1 Summary of body weight and body weight gain Female

Group		Body weight (g) on days						Body weight (g) between days			
Group		0	3	7	10	13	0-3	3-7	7-10	10-13	0-13
Control EVO Olive Oil	Mean SD n	132.0 5.5 5	140.4 3.6 5	154.6 4.0 5	161.0 3.2 5	171.0 7.1 5	8.4 3.0 5	14.2 4.5 5	6.4 2.1 5	10.0 5.7 5	39.0 9.8 5
4 (3.85) Mg/kg bw/day Olive Oil infused with C60	Mean SD n %	132.8 3.0 5 1	140.2 4.3 5 0	154.6 6.8 5 0	163.6 6.7 5 2	174.4 4.7 5 2	7.4 2.9 5	14.4 2.7 5	9.0 1.4 5	10.8 2.6 5	41.6 2.3 5
		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

REMARKS: ±% = Percent Deviation Versus Control

NS = Not Significant* = p < 0.05
** = p < 0.01
U = Mann-Whitney U - test Versus Control
DN = Duncan's multiple range test

APPENDIX 2.2 Individual body weight and body weight gain

Male

Group	Animal	Body weight (g) on days					Body weight (g) between days				
	number	0	3	7	10	13	0-3	3-7	7-10	10-13	0-13
Control EVO Olive Oil	9656 9657 9658 9662 9673	173 174 184 182 177	193 194 201 203 196	219 217 228 232 226	243 235 246 251 237	256 252 263 271 251	20 20 17 21 19	26 23 27 29 30	24 18 18 19 11	13 17 17 20 14	83 78 79 89 74
4 (3.85) mg/kg bw/day Olive Oil infused with C60	9655 9660 9666 9672 9679	181 182 173 184 170	198 200 196 208 190	218 226 219 236 211	234 240 235 253 226	244 254 242 271 240	17 18 23 24 20	20 26 23 28 21	16 14 16 17 15	10 14 7 18 14	63 72 69 87 70

APPENDIX 2.2 Individual body weight and body weight gain

Female

Group	Animal]	Body we	eight (g)	on days	5	Body weight (g) between days				
	number	0	3	7	10	13	0-3	3-7	7-10	10-13	0-13
Control EVO Olive Oil	9681 9691 9697 9698 9701	126 128 134 132 140	138 136 140 143 145	151 152 159 159 152	159 158 162 166 160	170 167 180 176 162	12 8 6 11 5	13 16 19 16 7	8 6 3 7 8	11 9 18 10 2	44 39 46 44 22
4 (3.85) mg/kg bw/day Olive Oil infused with C60	9684 9689 9690 9692 9695	134 128 136 130 128	144 137 145 135 140	162 148 161 148 154	172 156 168 158 164	179 168 179 172 174	10 9 9 3 6	18 11 16 13 14	10 8 7 10 10	7 12 11 14 10	45 40 43 40 40

APPENDIX 3.1 Summary of food consumption

Male

Group		(g/anir	nsumption nal/day) en days
Group		0 - 7	7 – 13
Control EVO Olive Oil	Mean SD n	22.3 0.9 5	22.5 1.1 5
4 (3.85) mg/kg bw/day Olive Oil infused with C60	Mean SD n ± %	21.0 1.0 5 -6	20.0 1.2 5 -11 *
		NS	DN

REMARKS: \pm % = Percent Deviation Versus Control

NS = Not Significant

* = p < 0.05 ** = p < 0.01

U = Mann-Whitney U - test Versus Control

DN = Duncan's multiple range test

APPENDIX 3.1 Summary of food consumption

Female

Group		(g/anii	nsumption mal/day) een days
		0-7	7 - 13
Control	Mean	14.5	14.5
EVO Olive Oil	SD	0.3	0.7
	n	5	5
4 (3.85)	Mean	15.0	14.2
mg/kg bw/day	SD	1.1	0.6
Olive Oil infused with	n	5	5
C60	$\pm \%$	3	-2
		NS	NS

Remarks:

 \pm % = Percent Deviation Versus Control

NS = Not Significant

* = p < 0.05

** = p < 0.01

U = Mann-Whitney U - test Versus Control

DN = Duncan's multiple range test

14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60 and C70 - in Rats

APPENDIX 3.2 Summary of feed efficiency

Group		Fe	eed efficiency (g food/g b	wg)
	Days Weeks	$0 - 7 \\ 1$	7 – 13 2	0-13
Control EVO Olive Oil	Mean SD n	3.38 0.13 5	4.03 0.70 5	3.62 0.20 5
4 (3.85) mg/kg bw/day Olive Oil infused with C60	Mean SD n	3.37 0.35 5 NS	4.31 0.49 5 NS	3.72 0.29 5 NS

Male

Remarks: Feed efficiency = food consumption/ body weight gain

NS = Not Significant* = p < 0.05

$$** = p < 0.01$$

U = Mann-Whitney U - test Versus Control

DN = Duncan's multiple range test

bwg = body weight gain

APPENDIX 3.2 Summary of feed efficiency

Female

Group		Fe	ed efficiency (g food/g b	wg)
Group	Days Weeks	0 – 7 1	7 – 13 2	0-13
Control EVO Olive Oil	Mean SD n	4.90 1.88 5	5.61 1.48 5	5.18 1.68 5
4 (3.85) mg/kg bw/day Olive Oil infused with C60	Mean SD N	4.95 0.93 5 NS	4.37 0.64 5 NS	4.57 0.16 5 NS

REMARKS:

Feed efficiency = food consumption/ body weight gain NS = Not Significant * = p < 0.05** = p < 0.01

U = Mann-Whitney U - test Versus Control

DN = Duncan's multiple range test

bwg = body weight gain

APPENDIX 3.3 Individual food consumption

Male

Group	Cage number	Animal number	Giver (§	n food g)		ed food g)	Food consumptic (g/animal/day) Between days			
			Day 0	Day 7	Day 7	Day 13	0 - 7	7 - 13		
Control EVO Olive Oil	$\frac{1}{2}$	9656 9657	400 400	400 400	250 247	260 272	21 22	23 21		
E VO Olive Oli	2 3 4	9658 9662	400 400	400	247 236	270 256	22 23	22 24		
	5	9673	400	400	238	268	23	24		
4 (3.85)	11	9655	400	400	254	286	21	19		
mg/kg bw/day Olive Oil infused	12 13	9660 9666	400 400	400 400	252 255	278 284	21 21	20 19		
with C60	14 15	9672 9679	400 400	400 400	242 262	269 284	23 20	22 19		

APPENDIX 3.3 Individual food consumption

Female

Group	Cage number	Animal number		ı food g)		ned food g)	Food consumptie (g/animal/day) Between days		
			Day 0	Day 7	Day 7	Day 13	0 - 7	7 - 13	
Control	21	9681	400	400	297	312	15	15	
EVO Olive Oil	22	9691	400	400	298	310	15	15	
	23	9697	400	400	299	310	14	15	
	24	9698	400	400	296	313	15	15	
	25	9701	400	400	301	320	14	13	
4 (2.95)	31	9684	400	400	287	314	16	14	
4 (3.85)	32	9689	400	400	304	319	14	14	
mg/kg bw/day	33	9690	400	400	287	310	16	15	
Olive Oil infused	34	9692	400	400	296	314	15	14	
with C60	35	9695	400	400	302	317	14	14	

APPENDIX 3.4 Individual feed efficiency

Male

Group	Animal	Feed efficiency (g food/g bwg)										
r	number	Days Weeks	0-7 1	7-13 2	0-13 1-2							
Control	9656		3.26	3.78	3.49							
EVO Olive Oil	9657		3.56	3.66	3.60							
	9658		3.48	3.71	3.58							
	9662		3.28	3.69	3.46							
	9673		3.31	5.28	3.97							
	9655		3.95	4.38	4.13							
4 (3.85)	9660		3.36	4.36	3.75							
mg/kg bw/day	9666		3.15	5.04	3.78							
Olive Oil infused with	9672		3.04	3.74	3.32							
C60	9679		3.37	4.00	3.63							

Remark: bwg = body weight gain

APPENDIX 3.4 Individual feed efficiency

Group	Animal		Feed effici	ency (g food/g bwg))
Ĩ	number	Days Weeks	0-7 1	7-13 2	0-13 1-2
Control	9681		4.12	4.63	4.34
EVO Olive Oil	9691		4.25	6.00	4.92
	9697		4.04	4.29	4.15
	9698		3.85	5.12	4.34
	9701		8.25	8.00	8.14
4 (2.95)	9684		4.04	5.06	4.42
4 (3.85)	9689		4.80	4.05	4.43
mg/kg bw/day	9690		4.52	5.00	4.72
Olive Oil infused with	9692		6.50	3.58	4.75
C60	9695		4.90	4.15	4.53

Female

Remark: bwg = body weight gain

APPENDIX 4.1

Summary of hematology and blood coagulation

Male

		WBC [x10 ⁹ /L]	NEU [%]	LYM [%]	MONO [%]	EOS [%]	BASO [%]	RBC [x10 ¹² /L]	HGB [g/L]	HCT [L/L]	MCV [fL]	MCH [pg]	MCHC [g/L]	PLT [x10 ⁹ /L]	RET [%]	PT [sec]	APTT [sec]
Control	Mean	6.96	19.44	75.68	2.48	1.98	0.06	7.60	151.0	0.44	58.02	20.00	344.4	973.4	3.32	10.36	11.08
EVO Olive Oil	SD	2.73	10.41	14.19	1.25	2.74	0.05	0.90	9.9	0.04	2.64	1.21	5.7	62.4	0.79	0.13	1.27
	n	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
4 (3.8)	Mean	6.74	13.04	84.02	1.78	0.70	0.06	7.79	159.2	0.47	60.54	20.48	338.4	964.8	3.20	10.28	11.92
mg/kg bw/day	SD	1.20	2.42	2.05	0.25	0.29	0.05	0.32	5.8	0.01	2.85	0.80	4.6	167.3	0.56	0.13	1.37
Olive Oil Infuse with	n	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Carbon C60	±%	-3	-33	11	-28	-65	0	2	5	7	4	2	-2	-1	-4	-1	8
		NS	NS	NS	NS	NS	NS	NS	DN	DN	NS	NS	NS	NS	NS	NS	NS

REMARKS: \pm % = Percent Deviation Versus Control

NS = Not Significant*= p < 0.05 ** = p < 0.01

U = Mann-Whitney U - test Versus Control DN = Duncan's multiple range test

APPENDIX 4.1 Summary of hematology and blood coagulation

Female

		WBC [x10 ⁹ /L]	NEU [%]	LYM [%]	MONO [%]	EOS [%]	BASO [%]	RBC [x10 ¹² /L]	HGB [g/L]	HCT [L/L]	MCV [fL]	MCH [pg]	MCHC [g/L]	PLT [x10 ⁹ /L]	RET [%]	PT [sec]	APTT [sec]
Control	Mean	6.60	13.90	82.44	2.32	0.90	0.04	7.95	155.8	0.45	57.00	19.56	343.0	1078.0	2.39	10.00	10.56
EVO Olive Oil	SD	1.40	3.07	2.98	0.68	0.34	0.05	0.25	6.3	0.02	1.68	0.61	2.1	157.1	0.26	0.23	0.43
	n	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
4 (3.8)	Mean	5.64	12.12	84.26	2.34	0.80	0.06	7.97	154.6	0.45	56.66	19.36	342.0	953.6	2.57	10.10	10.80
mg/kg bw/day	SD	0.86	4.55	5.29	1.39	0.29	0.05	0.22	5.3	0.01	0.71	0.43	6.7	118.3	0.38	0.12	0.51
Olive Oil Infuse with	n	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Carbon C60	$\pm\%$	-15	-13	2	1	-11	50	0	-1	-1	-1	-1	0	-12	8	1	2
		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

REMARKS: \pm % = Percent Deviation Versus Control

NS = Not Significant

* = p < 0.05

** = p < 0.01

U = Mann-Whitney U - test Versus Control DN = Duncan's multiple range test

APPENDIX 4.2 Individual data of hematology and blood coagulation Male

		WBC [x10 ⁹ /L]	NEU [%]	LYM [%]	MONO [%]	EOS [%]	BASO [%]	RBC [x10 ¹² /L]	HGB [g/L]	HCT [L/L]	MCV [fL]	MCH [pg]	MCHC [g/L]	PLT [x10 ⁹ /L]	RET [%]	PT [sec]	APTT [sec]
Control	9656	7.3	16.5	79.9	2.4	0.6	0.0	6.06	134	0.38	62.6	22.1	354	973	4.46	10.3	10.7
EVO Olive Oil	9657	7.3	13.8	84.1	1.3	0.5	0.1	7.91	155	0.45	57.2	19.6	342	964	3.40	10.2	10.6
	9658	2.3	36.3	52.2	4.5	6.8	0.1	7.98	156	0.46	57.5	19.6	341	1071	2.57	10.3	10.7
	9662	9.0	9.2	88.4	1.6	0.4	0.0	7.67	151	0.44	57.0	19.7	345	962	3.59	10.5	10.1
	9673	8.9	21.4	73.8	2.6	1.6	0.1	8.39	159	0.47	55.8	19.0	340	897	2.58	10.5	13.3
4 (3.8)	9655	8.2	16.3	81.1	1.6	0.6	0.0	7.51	161	0.48	64.3	21.4	333	684	3.65	10.4	14.3
mg/kg bw/day	9660	7.8	10.9	85.9	1.8	1.1	0.1	7.92	159	0.47	58.8	20.1	341	948	3.00	10.1	11.4
Olive Oil Infuse with	9666	5.6	12.3	84.9	1.6	0.5	0.1	8.21	160	0.47	57.0	19.5	343	1067	2.33	10.3	11.1
Carbon C60	9672	5.7	10.9	85.5	2.2	0.9	0.0	7.44	150	0.45	60.4	20.2	334	1022	3.69	10.2	11.0
	9679	6.4	14.8	82.7	1.7	0.4	0.1	7.85	166	0.49	62.2	21.2	341	1103	3.32	10.4	11.8

APPENDIX 4.2 Individual data of hematology and blood coagulation Female

		WBC [x10 ⁹ /L]	NEU [%]	LYM [%]	MONO [%]	EOS [%]	BASO [%]	RBC [x10 ¹² /L]	HGB [g/L]	HCT [L/L]	MCV [fL]	MCH [pg]	MCHC [g/L]	PLT [x10 ⁹ /L]	RET [%]	PT [sec]	APTT [sec]
Control	9681	6.3	14.7	82.8	1.5	0.7	0.0	8.31	160	0.47	56.3	19.2	341	916	2.29	9.8	10.2
EVO Olive Oil	9691	8.9	13.4	82.0	3.0	0.8	0.1	7.72	145	0.42	54.7	18.8	343	1142	2.45	10.0	10.
	9697	6.5	14.5	82.4	1.8	0.8	0.1	7.72	158	0.46	59.3	20.4	344	1079	2.71	9.9	10.4
	9698	6.2	9.2	86.7	3.0	0.7	0.0	8.05	160	0.46	57.4	19.8	346	948	2.48	10.4	11.
	9701	5.1	17.7	78.3	2.3	1.5	0.0	7.96	156	0.46	57.3	19.6	341	1305	2.01	9.9	10.4
4 (3.8)	9684	6.9	9.1	87.7	1.9	0.6	0.1	7.83	147	0.44	56.6	18.7	331	1093	2.39	10.1	10.0
mg/kg bw/day	9689	5.8	17.9	79.5	1.6	0.7	0.1	8.07	158	0.46	57.1	19.5	342	865	2.96	10.1	11.0
Olive Oil Infuse with	9690	5.6	14.1	81.9	2.8	0.8	0.0	8.29	159	0.46	55.8	19.2	344	986	2.10	10.0	11.1
Carbon C60	9692	4.5	13.3	80.4	4.5	1.3	0.1	7.71	151	0.43	56.2	19.6	349	802	2.46	10.0	11.3
	9695	5.4	6.2	91.8	0.9	0.6	0.0	7.95	158	0.46	57.6	19.8	344	1022	2.96	10.3	10.6

Remark: -= No data (coagulated sample)

APPENDIX 5.1 Summary of clinical chemistry Male

		ALT [U/L]	AST [U/L]	GGT [U/L]	ALP [U/L]	TBIL [µmol/L]	CREA [µmol/L]	UREA [mmol/L]	GLUC [mmol/L]	CHOL [mmol/L]	Pi [mmol/L]	Ca ⁺⁺ [mmol/L]	Na ⁺ [mmol/L]	K ⁺ [mmol/L]	Cl ⁻ [mmol/L]	ALB [g/L]	TPROT [g/L]	A/G
Control EVO Olive Oil	Mean SD	65.6 14.3	116.4 21.4	-	305.2 109.6	1.82 0.29	35.6 3.3	$7.40 \\ 0.85$	5.98 0.34	2.26 0.38	3.10 0.15	2.79 0.05	141.20 0.94	4.55 0.27	98.82 1.42	43.96	61.36 2.18	2.54 0.21
	n	5	5	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5
4 (3.8)	Mean	56.2	95.4	-	299.0	2.20	36.0	8.70	5.34	2.37	3.17	2.84	143.96	4.36	100.64	45.02	62.34	2.60
mg/kg bw/day	SD	10.0	12.1	-	68.9	0.56	1.9	0.86	0.24	0.40	0.12	0.05	1.63	0.12	2.06	1.66	1.52	0.19
Olive Oil Infuse with	n	5	5	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Carbon C60	±%	-14	-18	-	-2	21	1	18	-11 **	5	2	2	2	-4	2	2	2	2
		NS	NS	-	NS	NS	NS	NS	DN	NS	NS	NS	NS	NS	NS	NS	NS	NS

REMARKS: \pm % = Percent Deviation Versus Control

NS = Not Significant* = p < 0.05 ** = p < 0.01

U = Mann-Whitney U - test Versus Control

DN = Duncan's multiple range test

- = No data (Values were below the quantification limit - 3 U/L)

APPENDIX 5.1 Summary of clinical chemistry Female

		ALT [U/L]	AST [U/L]	GGT [U/L]	ALP [U/L]	TBIL [µmol/L]	CREA [µmol/L]	UREA [mmol/L]	GLUC [mmol/L]	CHOL [mmol/L] [Pi [mmol/L] [Ca ⁺⁺ [mmol/L]	Na ⁺ [mmol/L]	K ⁺ [mmol/L]	Cl ⁻ [mmol/L]	ALB [g/L]	TPROT [g/L]	A/G
Control	Mean	48.2	117.6	-	190.4	2.04	38.4	6.22	4.98	1.74	2.57	2.63	141.14	4.08	102.18	45.26	60.80	2.90
EVO Olive Oil	SD	17.2	35.9	-	36.1	0.17	2.1	0.97	0.49	0.17	0.12	0.05	0.91	0.29	0.97	0.93	1.70	0.21
	n	5	5	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5
4 (3.8)	Mean	38.80	90.80	-	155.6	2.00	37.6	5.58	5.03	1.82	2.50	2.61	140.94	3.84	101.64	44.60	60.24	2.86
mg/kg bw/day	SD	5.17	19.69	-	32.3	0.37	1.9	0.51	0.30	0.21	0.17	0.06	0.75	0.21	0.98	0.97	1.69	0.32
Olive Oil Infuse with	n	5	5	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5
Carbon C60	±%	-20	-23	-	-18	-2	-2	-10	1	5	-3	-1	0	-6	-1	-1	-1	-1
		NS	NS	-	NS	NS	NS	NS	NS	NS	NS	DN	NS	NS	NS	NS	NS	NS

REMARKS: $\pm\%$ = Percent Deviation Versus Control

NS = Not Significant

* = p < 0.05** = p < 0.01

U = Mann-Whitney U - test Versus Control

DN = Duncan's multiple range test

- = No data (Values were below the quantification limit - 3 U/L)

APPENDIX 5.2 Individual data of clinical chemistry Male

Group	Animal number	ALT [U/L]	AST [U/L]	GGT [U/L]	ALP [U/L]	TBIL [µmol/L]	CREA [µmol/L]		GLUC [mmol/L	CHOL [mmol/L [Pi mmol/L [Ca ⁺⁺ mmol/L	Na⁺ [mmol/L [K ⁺ mmol/L	Cl ⁻ [mmol/L	ALB [g/L]	TPROT [g/L]	A/G
Control	9656	66	100	bql	483	1.4	38	7.6	6.01	2.83	2.99	2.81	142.0	4.93	99.7	45.0	61.6	2.7
EVO Olive Oil	9657	83	151	bql	287	2.1	36	6.3	6.19	2.35	2.99	2.72	140.0	4.38	99.8	44.0	60.9	2.6
	9658	44	106	bql	213	1.7	38	8.4	5.77	2.27	3.20	2.76	140.8	4.30	96.5	41.9	58.5	2.5
	9662	72	123	bql	220	2.1	30	6.8	6.41	1.84	3.00	2.81	142.3	4.40	98.4	44.7	61.2	2.7
	9673	63	102	bql	323	1.8	36	7.9	5.54	2.00	3.31	2.85	140.9	4.76	99.7	44.2	64.6	2.2
4 (3.8)	9655	46	89	bql	357	1.6	34	9.1	5.68	2.29	3.14	2.84	145.3	4.50	101.4	43.8	62.6	2.3
mg/kg bw/day	9660	57	93	bql	279	2.1	39	9.4	5.04	1.87	3.31	2.81	142.9	4.33	101.5	43.5	60.4	2.6
Olive Oil Infuse with	9666	71	94	bql	376	2.5	36	9.4	5.30	2.46	3.01	2.79	145.0	4.19	98.1	47.1	64.4	2.7
Carbon C60	9672	48	116	bql	205	1.8	35	7.5	5.46	2.97	3.25	2.88	145.0	4.33	103.2	44.2	61.4	2.6
	9679	59	85	bql	278	3.0	36	8.1	5.23	2.26	3.13	2.90	141.6	4.45	99.0	46.5	62.9	2.8

Remark: GGT values were below the quantification limit (3 U/L)

APPENDIX 5.2 Individual data of clinical chemistry Female

Group	Animal number	ALT [U/L]	AST [U/L]	GGT [U/L]	ALP [U/L]	TBIL [µmol/L]				CHOL [mmol/L	Pi mmol/L [Ca ⁺⁺ mmol/L	Na⁺ [mmol/L [K ⁺ mmol/L	Cl ⁻ [mmol/L	ALB [g/L]	TPROT [g/L]	A/G
Control	9681	44	104	bql	173	2.0	38	6.8	4.93	1.70	2.58	2.64	142.4	3.82	102.1	45.9	62.6	2.7
EVO Olive Oil	9691	74	96	bql	169	2.0	40	7.3	4.57	1.89	2.77	2.67	140.3	4.40	100.8	43.7	58.1	3.0
	9697	32	97	bql	230	1.8	36	5.2	5.83	1.78	2.54	2.59	141.0	3.96	102.7	45.9	60.4	3.2
	9698	35	110	bql	228	2.2	37	5.2	4.78	1.46	2.50	2.68	140.3	4.38	101.9	45.1	61.6	2.7
	9701	56	181	bql	152	2.2	41	6.6	4.81	1.86	2.46	2.58	141.7	3.82	103.4	45.7	61.3	2.9
4 (3.8)	9684	40	72	bql	140	2.4	40	5.6	5.16	2.12	2.74	2.67	141.6	4.14	102.7	44.2	59.8	2.8
mg/kg bw/day	9689	38	80	bql	183	1.4	37	5.8	5.15	1.76	2.52	2.58	140.5	3.63	101.2	44.2	62.5	2.4
Olive Oil Infuse with	9690	47	123	bql	152	2.1	39	4.7	4.86	1.91	2.38	2.67	140.0	3.88	100.9	45.5	59.2	3.3
Carbon C60	9692	34	94	bql	191	2.0	37	5.9	5.38	1.75	2.29	2.52	140.8	3.66	102.7	43.4	58.3	2.9
	9695	35	85	bql	112	2.1	35	5.9	4.62	1.55	2.56	2.61	141.8	3.88	100.7	45.7	61.4	2.9

Remark: GGT values were below the quantification limit (3 U/L)

APPENDIX 6.1 Summary of necropsy findings Male

Organs	Observations	Control EVO Olive Oil	4 (3.8) mg/kg bw/day Olive Oil Infuse with Carbon C60	
	No macroscopic findings	4/5	5/5	
Thymus	Hemorrhages	1/5	0/5	
Lungs	Reddish-brown spot on the left side small lobe - pea-sized	0/5	0/5	
Skin	Scars - left ear, neck	0/5	0/5	

APPENDIX 6.2 Summary of necropsy findings Female

croscopic findings	EVO Olive Oil 3/5	Olive Oil Infuse with Carbon C60 2/5	
croscopic findings	3/5	2/5	
ike hemorrhages	0/5	1/5	
rhage	0/5	1/5	
tasia	1/5	0/5	
metra	1/5	1/5	
	tasia netra		netra 1/5 1/5

APPENDIX 6.2 Individual necropsy findings Male

Group	Animal number	Organs	Observations	
Control	9656		No macroscopic findings	Day 14
EVO Olive Oil	9657		No macroscopic findings	Day 14
	9658	Thymus	Hemorrhages	Day 14
	9662		No macroscopic findings	Day 14
	9673		No macroscopic findings	Day 14
4 (3.8)	9655		No macroscopic findings	Day 14
mg/kg bw/day	9660		No macroscopic findings	Day 14
Olive Oil Infuse with	9666		No macroscopic findings	Day 14
Carbon C60	9672		No macroscopic findings	Day 14
Curbon Coo	9679		No macroscopic findings	Day 14

APPENDIX 6.2 Individual necropsy findings Female

Group	Animal number	Organs	Observations						
Control	9681	Uterus	Hydrometra - moderate	Day 14					
EVO Olive Oil	9691		No macroscopic findings	Day 14					
	9697		No macroscopic findings	Day 14					
	9698		No macroscopic findings	Day 14					
	9701	Kidneys	Pyelectasia - right side	Day 14					
4 (3.8)	9684	Thymus	Point-like hemorrhages	Day 14					
mg/kg bw/day	9689	Lungs	Hemorrhage - left side small lobe	Day 14					
Olive Oil Infuse with	9690		No macroscopic findings	Day 14					
Carbon C60	9692	Uterus	Hydrometra - moderate	Day 14					
	9695		No macroscopic findings	Day 14					

APPENDIX 7.1 Summary of organ weight Male

		Body					Organ w	eight (g)				
		weight	Brain	Liver	Kidneys	Heart	Thymus	Spleen	Testes	Epididy- mides	Seminal vesicles† Prostate	Adrenal glands
Control	Mean	247.0	1.89	7.98	1.96	0.73	0.60	0.56	2.79	0.75	1.04	0.064
EVO Olive Oil	SD	6.67	0.05	0.69	0.13	0.04	0.09	0.10	0.13	0.09	0.20	0.008
	n	5	5	5	5	5	5	5	5	5	5	5
4 (3.8)	Mean	241.0	1.93	7.62	1.84	0.71	0.65	0.60	2.80	0.80	0.94	0.066
mg/kg bw/day	SD	9.80	0.11	0.58	0.14	0.06	0.10	0.09	0.09	0.08	0.07	0.012
Olive Oil Infuse with	n	5	5	5	5	5	5	5	5	5	5	5
Carbon C60	$\pm \%$	-2	2	-4	-6	-3	9	8	0	7	-9	3
		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Remarks: † = Seminal vesicles with coagulating gland

 \pm % = Percent Deviation Versus Control

NS = Not Significant

* = p < 0.05

** = p < 0.01

U = Mann-Whitney U - test Versus Control

DN = Duncan's multiple range test

					Organ wei	ght relative	e to body w	eight (%)			
		Brain	Liver	Kidneys	Heart	Thymus	Spleen	Testes	Epididy- mides	Seminal vesicles† Prostate	Adrenal glands
Control	Mean	0.764	3.225	0.794	0.296	0.242	0.225	1.130	0.303	0.421	0.0261
EVO Olive Oil	SD	0.023	0.201	0.042	0.010	0.037	0.039	0.032	0.042	0.077	0.0036
	n	5	5	5	5	5	5	5	5	5	5
4 (3.8)	Mean	0.802	3.160	0.765	0.294	0.268	0.249	1.164	0.333	0.393	0.0277
mg/kg bw/day	SD	0.054	0.125	0.042	0.020	0.036	0.029	0.046	0.029	0.041	0.0056
Olive Oil Infuse with	n	5	5	5	5	5	5	5	5	5	5
Carbon C60	$\pm \%$	5	-2	-4	-1	11	11	3	10	-7	6
		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Remarks: † = Seminal vesicles with coagulating gland

 \pm % = Percent Deviation Versus Control

NS = Not Significant

* = p < 0.05

** = p < 0.01

U = Mann-Whitney U - test Versus Control DN = Duncan's multiple range test

				Organ w	eight and l	ody weigh	t relative to	o brain we	eight (%)		
		Body weight	Liver	Kidneys	Heart	Thymus	Spleen	Testes	Epididy- mides	Seminal vesicles† Prostate	Adrenal glands
Control	Mean	13101.7	422.97	104.10	38.81	31.60	29.55	148.11	39.79	55.32	3.42
EVO Olive Oil	SD	412.86	36.53	7.86	1.67	4.49	5.64	7.43	5.91	11.69	0.44
	n	5	5	5	5	5	5	5	5	5	5
4 (3.8)	Mean	12521.5	395.96	95.91	36.96	33.75	31.21	145.62	41.85	49.05	3.45
mg/kg bw/day	SD	902.84	35.45	10.64	4.83	6.53	4.22	10.44	6.82	4.35	0.61
Olive Oil Infuse with	n	5	5	5	5	5	5	5	5	5	5
Carbon C60	$\pm \%$	-4	-6	-8	-5	7	6	-2	5	-11	1
		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

Remarks: † = Seminal vesicles with coagulating gland

 $\pm\%$ = Percent Deviation Versus Control

NS = Not Significant

* = p < 0.05

** = p < 0.01

U = Mann-Whitney U - test Versus Control

DN = Duncan's multiple range test

APPENDIX 7.1 Summary of organ weight Female

		Body				Or	gan weight (g)			
		weight	Brain	Liver	Kidneys	Heart	Thymus	Spleen	Uterus	Ovaries	Adrenal glands
Control	Mean	161.2	1.73	5.06	1.29	0.53	0.51	0.33	0.50	0.080	0.073
EVO Olive Oil	SD	3.70	0.03	0.24	0.08	0.02	0.05	0.02	0.13	0.008	0.006
	n	5	5	5	5	5	5	5	5	5	5
4 (3.8)	Mean	164.0	1.71	5.04	1.31	0.52	0.47	0.37	0.45	0.085	0.068
mg/kg bw/day	SD	7.31	0.07	0.14	0.04	0.06	0.05	0.05	0.09	0.017	0.007
Olive Oil Infuse with	n	5	5	5	5	5	5	5	5	5	5
Carbon C60	$\pm \%$	2	-1	0	2	-1	-8	10	-10	6	-7
		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

REMARKS: \pm % = Percent Deviation Versus Control

NS = Not Significant* = p < 0.05

** = p < 0.01

U = Mann-Whitney U - test Versus Control DN = Duncan's multiple range test

APPENDIX 7.1 Summary of organ weight Female

		Organ weight relative to body weight (%)								
		Brain	Liver	Kidneys	Heart	Thymus	Spleen	Uterus	Ovaries	Adrenal glands
Control	Mean	1.075	3.141	0.799	0.326	0.314	0.206	0.314	0.0498	0.0455
EVO Olive Oil	SD	0.021	0.142	0.039	0.014	0.027	0.009	0.087	0.0040	0.0033
	n	5	5	5	5	5	5	5	5	5
4 (3.8)	Mean	1.044	3.079	0.801	0.318	0.285	0.223	0.278	0.0518	0.0415
mg/kg bw/day	SD	0.046	0.109	0.023	0.028	0.022	0.029	0.065	0.0086	0.0051
Olive Oil Infuse with	n	5	5	5	5	5	5	5	5	5
Carbon C60	$\pm \%$	-3	-2	0	-3	-9	8	-12	4	-9
		NS	NS	NS	NS	NS	NS	NS	NS	NS

REMARKS: \pm % = Percent Deviation Versus Control

NS = Not Significant

* = p < 0.05** = p < 0.01

U = Mann-Whitney U - test Versus Control DN = Duncan's multiple range test

APPENDIX 7.1 Summary of organ weight Female

				Organ weig	ht and body	weight relativ	ve to brain w	eight (%)		
		Body weight	Liver	Kidneys	Heart	Thymus	Spleen	Uterus	Ovaries	Adrenal glands
Control	Mean	9307.9	292.19	74.36	30.37	29.23	19.17	29.12	4.64	4.24
EVO Olive Oil	SD	183.81	10.99	4.24	1.15	2.81	1.12	7.55	0.43	0.30
	n	5	5	5	5	5	5	5	5	5
4 (3.8)	Mean	9596.6	295.42	76.77	30.53	27.38	21.43	26.58	4.98	3.98
mg/kg bw/day	SD	434.47	16.29	2.09	3.03	2.93	3.09	5.93	0.97	0.39
Olive Oil Infuse with	n	5	5	5	5	5	5	5	5	5
Carbon C60	$\pm \%$	3	1	3	1	-6	12	-9	7	-6
		NS	NS	NS	NS	NS	NS	NS	NS	NS

REMARKS: \pm % = Percent Deviation Versus Control

NS = Not Significant

* = p < 0.05** = p < 0.01

U = Mann-Whitney U - test Versus Control

DN = Duncan's multiple range test

Group	Animal	Body					Organ w	eight (g)				
•	number	weight	Brain	Liver	Kidneys	Heart	Thymus	Spleen	Testes	Epididy- mides	Seminal vesicles† Prostate	Adrenal glands
Control	9656	249	1.92	8.06	2.10	0.77	0.71	0.56	2.69	0.66	1.11	0.054
EVO Olive Oil	9657	237	1.82	6.94	1.86	0.67	0.58	0.53	2.66	0.88	1.03	0.072
	9658	251	1.93	8.03	1.91	0.75	0.48	0.41	2.92	0.70	0.83	0.072
	9662	254	1.84	8.87	2.11	0.75	0.56	0.68	2.93	0.80	1.34	0.060
	9673	244	1.92	7.98	1.83	0.72	0.65	0.60	2.76	0.70	0.89	0.064
4 (3.8)	9655	234	1.95	7.51	1.86	0.63	0.61	0.64	2.84	0.74	0.95	0.086
mg/kg bw/day	9660	246	1.75	7.78	1.95	0.79	0.77	0.59	2.81	0.94	0.90	0.060
Olive Oil Infuse with	9666	234	1.99	6.99	1.62	0.72	0.65	0.50	2.64	0.74	0.99	0.060
Carbon C60	9672	256	2.05	8.52	1.98	0.74	0.71	0.73	2.87	0.80	0.86	0.058
	9679	235	1.91	7.32	1.81	0.67	0.50	0.55	2.85	0.79	1.02	0.068

Remark:

† = Seminal vesicles with coagulating gland

Group	Animal				Organ we	ight relative	e to body w	eight (%)	1		
·	number	Brain	Liver	Kidneys	Heart	Thymus	Spleen	Testes	Epididy- mides	Seminal vesicles† Prostate	Adrenal glands
Control	9656	0.771	3.237	0.843	0.309	0.285	0.225	1.080	0.265	0.446	0.0217
EVO Olive Oil	9657	0.768	2.928	0.785	0.283	0.245	0.224	1.122	0.371	0.435	0.0304
	9658	0.769	3.199	0.761	0.299	0.191	0.163	1.163	0.279	0.331	0.0287
	9662	0.724	3.492	0.831	0.295	0.220	0.268	1.154	0.315	0.528	0.0236
	9673	0.787	3.270	0.750	0.295	0.266	0.246	1.131	0.287	0.365	0.0262
4 (3.8)	9655	0.833	3.209	0.795	0.269	0.261	0.274	1.214	0.316	0.406	0.0368
mg/kg bw/day	9660	0.711	3.163	0.793	0.321	0.313	0.240	1.142	0.382	0.366	0.0244
Olive Oil Infuse with	9666	0.850	2.987	0.692	0.308	0.278	0.214	1.128	0.316	0.423	0.0256
Carbon C60	9672	0.801	3.328	0.773	0.289	0.277	0.285	1.121	0.313	0.336	0.0227
	9679	0.813	3.115	0.770	0.285	0.213	0.234	1.213	0.336	0.434	0.0289

Remark: † = Seminal vesicles with coagulating gland

Group	Animal			Organ w	eight and	body weigh	t relative	to brain w	eight (%)		
r	number	Body weight	Liver	Kidneys	Heart	Thymus	Spleen	Testes	Epididy- mides	Seminal vesicles† Prostate	Adrenal glands
Control	9656	12968.8	419.79	109.38	40.10	36.98	29.17	140.10	34.38	57.81	2.81
EVO Olive Oil	9657	13022.0	381.32	102.20	36.81	31.87	29.12	146.15	48.35	56.59	3.96
	9658	13005.2	416.06	98.96	38.86	24.87	21.24	151.30	36.27	43.01	3.73
	9662	13804.3	482.07	114.67	40.76	30.43	36.96	159.24	43.48	72.83	3.26
	9673	12708.3	415.63	95.31	37.50	33.85	31.25	143.75	36.46	46.35	3.33
4 (3.8)	9655	12000.0	385.13	95.38	32.31	31.28	32.82	145.64	37.95	48.72	4.41
mg/kg bw/day	9660	14057.1	444.57	111.43	45.14	44.00	33.71	160.57	53.71	51.43	3.43
Olive Oil Infuse with	9666	11758.8	351.26	81.41	36.18	32.66	25.13	132.66	37.19	49.75	3.02
Carbon C60	9672	12487.8	415.61	96.59	36.10	34.63	35.61	140.00	39.02	41.95	2.83
	9679	12303.7	383.25	94.76	35.08	26.18	28.80	149.21	41.36	53.40	3.56

Remark: *†* = Seminal vesicles with coagulating gland

APPENDIX 7.2 Individual organ weight Female

Group	Animal Body Organ weight (g)										
L L	number	weight	Brain	Liver	Kidneys	Heart	Thymus	Spleen	Uterus	Ovaries	Adrenal glands
Control	9681	157	1.74	5.07	1.28	0.54	0.46	0.32	0.68	0.076	0.069
EVO Olive Oil	9691	162	1.73	5.34	1.28	0.50	0.58	0.33	0.42	0.082	0.073
	9697	166	1.78	5.26	1.33	0.55	0.49	0.34	0.44	0.084	0.082
	9698	163	1.71	4.78	1.38	0.54	0.52	0.36	0.38	0.090	0.067
	9701	158	1.70	4.86	1.17	0.50	0.48	0.31	0.60	0.070	0.076
4 (3.8)	9684	171	1.74	5.08	1.32	0.61	0.49	0.41	0.42	0.114	0.065
mg/kg bw/day	9689	154	1.63	4.94	1.25	0.51	0.43	0.31	0.54	0.074	0.060
Olive Oil Infuse with	9690	170	1.66	5.27	1.33	0.50	0.52	0.39	0.43	0.087	0.066
Carbon C60	9692	159	1.72	5.01	1.32	0.46	0.40	0.41	0.54	0.077	0.080
	9695	166	1.80	4.92	1.34	0.53	0.50	0.31	0.33	0.074	0.069

APPENDIX 7.2 Individual organ weight Female

Group	Animal			Organ we	ight relativ	e to body we	ight (%)			
-	number	Brain	Liver	Kidneys	Heart	Thymus	Spleen	Uterus	Ovaries	Adrenal glands
Control	9681	1.108	3.229	0.815	0.344	0.293	0.204	0.433	0.0484	0.0439
EVO Olive Oil	9691	1.068	3.296	0.790	0.309	0.358	0.204	0.259	0.0506	0.0451
	9697	1.072	3.169	0.801	0.331	0.295	0.205	0.265	0.0506	0.0494
	9698	1.049	2.933	0.847	0.331	0.319	0.221	0.233	0.0552	0.0411
	9701	1.076	3.076	0.741	0.316	0.304	0.196	0.380	0.0443	0.0481
4 (3.8)	9684	1.018	2.971	0.772	0.357	0.287	0.240	0.246	0.0667	0.0380
mg/kg bw/day	9689	1.058	3.208	0.812	0.331	0.279	0.201	0.351	0.0481	0.0390
Olive Oil Infuse with	9690	0.976	3.100	0.782	0.294	0.306	0.229	0.253	0.0512	0.0388
Carbon C60	9692	1.082	3.151	0.830	0.289	0.252	0.258	0.340	0.0484	0.0503
	9695	1.084	2.964	0.807	0.319	0.301	0.187	0.199	0.0446	0.0416

APPENDIX 7.2 Individual organ weight Female

Group	Animal		Orgai	n weight and	body weig	ht relative to	brain weig	ht (%)		
-	number	Body weight	Liver	Kidneys	Heart	Thymus	Spleen	Uterus	Ovaries	Adrenal glands
Control	9681	9023.0	291.38	73.56	31.03	26.44	18.39	39.08	4.37	3.97
EVO Olive Oil	9691	9364.2	308.67	73.99	28.90	33.53	19.08	24.28	4.74	4.22
	9697	9325.8	295.51	74.72	30.90	27.53	19.10	24.72	4.72	4.61
	9698	9532.2	279.53	80.70	31.58	30.41	21.05	22.22	5.26	3.92
	9701	9294.1	285.88	68.82	29.41	28.24	18.24	35.29	4.12	4.47
4 (3.8)	9684	9827.6	291.95	75.86	35.06	28.16	23.56	24.14	6.55	3.74
mg/kg bw/day	9689	9447.9	303.07	76.69	31.29	26.38	19.02	33.13	4.54	3.68
Olive Oil Infuse with	9690	10241.0	317.47	80.12	30.12	31.33	23.49	25.90	5.24	3.98
Carbon C60	9692	9244.2	291.28	76.74	26.74	23.26	23.84	31.40	4.48	4.65
	9695	9222.2	273.33	74.44	29.44	27.78	17.22	18.33	4.11	3.83

APPENDIX 8.1 Summary of histopathology findings Male

Organs	Observations	Control EVO Olive Oil	Incidence of observations 4 (3.8) mg/kg bw/day Olive Oil Infuse with Carbon C60
Adrenal glands	No lesion	5/5	5/5
Aorta	No lesion	5/5	5/5
Bone marrow	No lesion	5/5	5/5
Brain	No lesion	5/5	5/5
Cecum	No lesion	5/5	5/5
Colon	No lesion	5/5	5/5
Duodenum	No lesion	5/5	5/5
Eyes + optic nerve	No lesion	5/5	5/5
Epididymides	No lesion	5/5	5/5
Esophagus	No lesion	5/5	5/5
Harderian glands	No lesion	5/5	5/5
Heart	No lesion	5/5	5/5
Ileum	No lesion	5/5	5/5
Jejunum	No lesion	5/5	5/5
Kidneys	No lesion	5/5	5/5
Lachrymal glands	No lesion	5/5	5/5
Liver	No lesion	5/5	5/5
Lungs	Focal inflammation	0/5	0/5
Dungs	Hemorrhage	0/5	0/5
Mammary gland	No lesion	5/5	5/5
Mesenteric lymph nodes	No lesion	5/5	5/5
Muscle (quadriceps)	No lesion	5/5	5/5
Nasal cavity	No lesion	5/5	5/5
Pancreas	No lesion	5/5	5/5
Pituitary	No lesion	5/5	5/5
Prostate	No lesion	5/5	5/5
Rectum	No lesion	5/5	5/5
Salivary glands (subm.)	No lesion	5/5	5/5
Sciatic nerve	No lesion	5/5	5/5
Seminal vesicle †	No lesion	5/5	5/5
Skin - Ear	Subacute dermatitis	0/5	0/5
Spinal cord	No lesion	5/5	0/3 5/5
Spleen	No lesion	5/5	5/5
Sternum	No lesion	5/5	5/5
Stomach	No lesion	5/5	5/5
Subm. lymph nodes	No lesion	5/5	5/5
Thymus		5/5 1/5	0/5
Thyroid + parathyroid	Acute hemorrhage No lesion	5/5	0/5 5/5
Testes	No lesion	5/5 5/5	5/5
Trachea	No lesion	5/5 5/5	5/5 5/5
Urinary bladder	No lesion	5/5	5/5

Remark: Frequency of observations: number of animals with observation/number of animals examined $\dagger =$ Seminal vesicle with coagulating gland

subm. = Submandibular

APPENDIX 8.2 Summary of histopathology findings Female

Organs	Observations	Control EVO Olive Oil	Incidence of observations 4 (3.8) mg/kg bw/day Olive Oil Infuse with Carbon C60
		- / -	
Adrenal glands	No lesion	5/5	5/5
Aorta	No lesion	5/5	5/5
Bone marrow	No lesion	5/5	5/5
Brain	No lesion	5/5	5/5
Cecum	No lesion	5/5	5/5
Colon	No lesion	5/5	5/5
Duodenum	No lesion	5/5	5/5
Eyes + optic nerve	No lesion	5/5	5/5
Esophagus	No lesion	5/5	5/5
Harderian glands	No lesion	5/5	5/5
Heart	No lesion	5/5	5/5
Ileum	No lesion	5/5	5/5
Jejunum	No lesion	5/5	5/5
Kidneys	Pyelectasia	1/5	0/5
Lachrymal glands	No lesion	5/5	5/5
Liver	No lesion	5/5	5/5
Lungs	Alveolar emphysema	0/5	1/5
	Hemorrhage	0/5	1/5
Mammary gland	No lesion	5/5	5/5
Mesenteric lymph nodes	No lesion	5/5	5/5
Muscle (quadriceps)	No lesion	5/5	5/5
Nasal cavity	No lesion	5/5	5/5
Ovaries	No lesion	5/5	5/5
Pancreas	No lesion	5/5	5/5
Pituitary	No lesion	5/5	5/5
Rectum	No lesion	5/5	5/5
Salivary glands (subm)	No lesion	5/5	5/5
Sciatic nerve	No lesion	5/5	5/5
Skin	No lesion	5/5	5/5
Spinal cord	No lesion	5/5	5/5
Spleen	No lesion	5/5	5/5
Sternum	No lesion	5/5	5/5
Stomach	No lesion	5/5	5/5
Subm. lymph nodes	No lesion	5/5	5/5
Thymus	Acute hemorrhage	0/5	1/5
Thyroid + parathyroid:	No lesion	5/5	5/5
Trachea	No lesion	5/5	5/5
Urinary bladder	No lesion	5/5	5/5
Uterus	Dilatation	2/5	1/5
	Cyst	0/5	0/5
Vagina	No lesion	5/5	5/5

Remark: Frequency of observations: number of animals with observation/number of animals examined subm. = Submandibular

APPENDIX 8.2 Individual histopathology findings Male

Group 1: Control EVO Olive Oil			Ani	mal num	bers	
Organs	Observations	9656	9657	9658	9662	9673
Adrenal glands	No lesion	+	+	+	+	+
Aorta	No lesion	+	+	+	+	+
Bone marrow	No lesion	+	+	+	+	+
Brain	No lesion	+	+	+	+	+
Cecum	No lesion	+	+	+	+	+
Colon	No lesion	+	+	+	+	+
Duodenum	No lesion	+	+	+	+	+
Eyes + optic nerve	No lesion	+	+	+	+	+
Epididymides	No lesion	+	+	+	+	+
Esophagus	No lesion	+	+	+	+	+
Harderian glands	No lesion	+	+	+	+	+
Heart	No lesion	+	+	+	+	+
Ileum	No lesion	+	+	+	+	+
Jejunum	No lesion	+	+	+	+	+
Kidneys	No lesion	+	+	+	+	+
Lachrymal glands	No lesion	+	+	+	+	+
Liver	No lesion	+	+	+	+	+
Lungs	No lesion	+	+	+	+	+
Mammary gland	No lesion	+	+	+	+	+
Mesenteric lymph nodes	No lesion	+	+	+	+	+
Muscle (quadriceps)	No lesion	+	+	+	+	+
Nasal cavity	No lesion	+	+	+	+	+
Pancreas	No lesion	+	+	+	+	+
Pituitary	No lesion	+	+	+	+	+
Prostate	No lesion	+	+	+	+	+
Rectum	No lesion	+	+	+	+	+
Salivary glands (subm.)	No lesion	+	+	+	+	+
Sciatic nerve	No lesion	+	+	+	+	+
Seminal vesicle †	No lesion	+	+	+	+	+
Skin	No lesion	+	+	+	+	+
Spinal cord	No lesion	+	+	+	+	+
Spleen	No lesion	+	+	+	+	+
Sternum	No lesion	+	+	+	+	+
Stomach	No lesion	+	+	+	+	+
Subm. lymph nodes	No lesion	+	+	+	+	+
Thymus	Acute hemorrhage	-	-	+ 2	-	т
Thyroid + parathyroid	No lesion	-+	- +	2 +	- +	- +
Testes	No lesion	++	++	+	+	+
				+	+	
Trachea	No lesion	+	+			+
Urinary bladder	No lesion	+	+	+	+	+

Remarks:

+ = Observation present- = Observation not present

/ = No data

1 = Minimal

2 = Mild 3 = Moderate

4 = Severe (Marked)

† = Seminal vesicle with coagulating gland subm. = Submandibular

b = both sides o = one side

APPENDIX 8.2 Individual histopathology findings Male

Olive Oil Infuse with Carl	bon C60	Animal numbers						
Organs	Observations	9655	9660	9666	9672	9679		
Adrenal glands	No lesion	+	+	+	+	+		
Aorta	No lesion	+	+	+	+	+		
Bone marrow	No lesion	+	+	+	+	+		
Brain	No lesion	+	+	+	+	+		
Cecum	No lesion	+	+	+	+	+		
Colon	No lesion	+	+	+	+	+		
Duodenum	No lesion	+	+	+	+	+		
Eyes + optic nerve	No lesion	+	+	+	+	+		
Epididymides	No lesion	+	+	+	+	+		
Esophagus	No lesion	+	+	+	+	+		
Harderian glands	No lesion	+	+	+	+	+		
Heart	No lesion	+	+	+	+	+		
lleum	No lesion	+	+	+	+	+		
lejunum	No lesion	+	+	+	+	+		
Kidneys	No lesion	+	+	+	+	+		
Lachrymal glands	No lesion	+	+	+	+	+		
Liver	No lesion	+	+	+	+	+		
Lungs	No lesion	+	+	+	+	+		
Mammary gland	No lesion	+	+	+	+	+		
Mesenteric lymph nodes	No lesion	+	+	+	+	+		
Muscle (quadriceps)	No lesion	+	+	+	+	+		
Nasal cavity	No lesion	+	+	+	+	+		
Pancreas	No lesion	+	+	+	+	+		
Pituitary	No lesion	+	+	+	+	+		
Prostate	No lesion	+	+	+	+	+		
Rectum	No lesion	+	+	+	+	+		
Salivary glands (subm.)	No lesion	+	+	+	+	+		
Sciatic nerve	No lesion	+	+	+	+	+		
Seminal vesicle †	No lesion	+	+	+	+	+		
Skin	No lesion	+	+	+	+	+		
Spinal cord	No lesion	+	+	+	+	+		
Spleen	No lesion	+	+	+	+	+		
Sternum	No lesion	+	+	+	+	+		
Stomach	No lesion	+	+	+	+	+		
Subm. lymph nodes	No lesion	+	+	+	+	+		
Thymus	No lesion	+	+	+	+	+		
Гhyroid + parathyroid	No lesion	+	+	+	+	+		
Testes	No lesion	+	+	+	+	+		
Frachea	No lesion	+	+	+	+	+		
Urinary bladder	No lesion	+	+	+	+	+		

+ = Observation present - = Observation not present

2 = Mild

3 = Moderate4 = Severe (Marked)

 \dagger = Seminal vesicle with coagulating gland

subm. = Submandibular

b = both sides

 $o = one \ side$

/ = No data

APPENDIX 8.2 Individual histopathology findings Female

Group 1: Control EVO Olive Oil			Ani	mal num	bers	
Organs	Observations	9681	9691	9697	9698	9701
Adrenal glands	No lesion	+	+	+	+	+
Aorta	No lesion	+	+	+	+	+
Bone marrow	No lesion	+	+	+	+	+
Brain	No lesion	+	+	+	+	+
Cecum	No lesion	+	+	+	+	+
Colon	No lesion	+	+	+	+	+
Duodenum	No lesion	+	+	+	+	+
Eyes + optic nerve	No lesion	+	+	+	+	+
Esophagus	No lesion	+	+	+	+	+
Harderian glands	No lesion	+	+	+	+	+
Heart	No lesion	+	+	+	+	+
Ileum	No lesion	+	+	+	+	+
Jejunum	No lesion	+	+	+	+	+
Kidneys	Pyelectasia	-	-	-	-	+0
Lachrymal glands	No lesion	+	+	+	+	+
Liver	No lesion	+	+	+	+	+
Lungs	No lesion	+	+	+	+	+
Mammary gland	No lesion	+	+	+	+	+
Mesenteric lymph nodes	No lesion	+	+	+	+	+
Muscle (quadriceps)	No lesion	+	+	+	+	+
Nasal cavity	No lesion	+	+	+	+	+
Ovaries:	No lesion	+	+	+	+	+
Pancreas	No lesion	+	+	+	+	+
Pituitary	No lesion	+	+	+	+	+
Rectum	No lesion	+	+	+	+	+
Salivary glands (subm)	No lesion	+	+	+	+	+
Sciatic nerve	No lesion	+	+	+	+	+
Skin	No lesion	+	+	+	+	+
Spinal cord	No lesion	+	+	+	+	+
Spleen	No lesion	+	+	+	+	+
Sternum	No lesion	+	+	+	+	+
Stomach	No lesion	+	+	+	+	+
Subm. lymph nodes	No lesion	+	+	+	+	+
Thymus	No lesion	+	+	+	+	+
Thyroid + parathyroid	No lesion	+	+	+	+	+
Trachea	No lesion	+	+	+	+	+
Urinary bladder	No lesion	+	+	+	+	+
Uterus	Dilatation	+	_	_	_	+
Vagina	No lesion	+	+	+	+	+

b = both sideso = one side

- = Observation not present / = No datasubm. = Submandibular

2 = Mild3 = Moderate

4 = Severe (Marked)

APPENDIX 8.2 Individual histopathology findings Female

Group:3 (3.8) mg/kg bw/d Olive Oil Infuse with Carl			Ani	mal num	bers	
Organs	Observations	9684	9689	9690	9692	9695
Adrenal glands	No lesion	+	+	+	+	+
Aorta	No lesion	+	+	+	+	+
Bone marrow	No lesion	+	+	+	+	+
Brain	No lesion	+	+	+	+	+
Cecum	No lesion	+	+	+	+	+
Colon	No lesion	+	+	+	+	+
Duodenum	No lesion	+	+	+	+	+
Eyes + optic nerve	No lesion	+	+	+	+	+
Esophagus	No lesion	+	+	+	+	+
Harderian glands	No lesion	+	+	+	+	+
Heart	No lesion	+	+	+	+	+
Ileum	No lesion	+	+	+	+	+
Jejunum	No lesion	+	+	+	+	+
Kidneys	No lesion	+	+	+	+	+
Lachrymal glands	No lesion	+	+	+	+	+
Liver	No lesion	+	+	+	+	+
Lungs	Alveolar emphysema	-	2	-	-	-
	Hemorrhage	-	1	-	-	-
Mammary gland	No lesion	+	+	+	+	+
Mesenteric lymph nodes	No lesion	+	+	+	+	+
Muscle (quadriceps)	No lesion	+	+	+	+	+
Nasal cavity	No lesion	+	+	+	+	+
Ovaries:	No lesion	+	+	+	+	+
Pancreas	No lesion	+	+	+	+	+
Pituitary	No lesion	+	+	+	+	+
Rectum	No lesion	+	+	+	+	+
Salivary glands (subm)	No lesion	+	+	+	+	+
Sciatic nerve	No lesion	+	+	+	+	+
Skin	No lesion	+	+	+	+	+
Spinal cord	No lesion	+	+	+	+	+
Spleen	No lesion	+	+	+	+	+
Sternum	No lesion	+	+	+	+	+
Stomach	No lesion	+	+	+	+	+
Subm. lymph nodes	No lesion	+	+	+	+	+
Thymus	Hemorrhage	2	-	_	_	_
Thyroid + parathyroid	No lesion	2 +	- +	-+	-+	- +
Trachea	No lesion	+	+	+	+	+
Urinary bladder	No lesion	+	+	+	+	+
Uterus	Dilatation	- -	- -	- -	+	T
	No lesion	-+	- +	-+	+	- +
Vagina	ino resion	+	+	+	+	+

Remark:

+ = Observation present

- = Observation not present

- / = No data subm. = Submandibular
- b = both sides

o = one side

1 = Minimal

2 = Mild

3 = Moderate 4 = Severe (Marked)

Copy of the Certificates of Analysis Olive Oil infuse with Carbon C60

	<u>Certificate (</u>				
	C	Olive Oil int			
			fuse with Carbon 6	0	
			SE20-142		
		· · · · · · · · · · · · · · · · · · ·	V01561	·····	
			04/17/2020		
1		0	04/17/2023		
	Method		Specification	Results	
	Observation		Reddish Brown liquid	PASS	
				PASS	
mg/kg)	HPLC		800-870	830	
Hg	Methods EAM 4.7	7	<0.010	PASS	
Pb	Methods EAM 4.	7	<0.010	PASS	
As	Methods EAM 4.	7	0.012	PASS	
Cd	Methods EAM 4.7		<0.010	PASS	
ecification	Quantity	Units	Method		
ount	<3000	CFU/g	USP <61>		
5				.4	
•					
а	Nega		USP<62>		
	(mg/kg) Hg Pb As Cd ecification ount old s ruginosa	Observation Smell Img/kg) HPLC Hg Methods EAM 4. Pb Methods EAM 4. As Methods EAM 4. Cd Methods EAM 4. ecification Quantity ount <3000 old <300 s <3 ruginosa Nega	Method 0 Method Observation Smell Smell 'mg/kg) HPLC Hg Methods EAM 4.7 Pb Methods EAM 4.7 As Methods EAM 4.7 Cd Methods EAM 4.7 ecification Quantity Units ount <3000 CFU / g s <3 MPN / g Negative Negative	Odd/17/2023 Method Specification Observation Reddish Brown liquid Smell Faint oil odor mg/kg) HPLC 800-870 Hg Methods EAM 4.7 Voltage C0.010 Pb Methods EAM 4.7 Cd Methods EAM 4.7 Cd Methods EAM 4.7 ecification Quantity Units Method ount <3000 CFU / g AOAC s <3 MPN / g FDA (BAM) Ch. Negative USP<62>	

Copy of the Certificates of Analysis

EVO Olive Oil

			<u>Certificate o</u>	<u>f Analysis</u>	<u># C</u>	<u>685</u>		
Product Na	ame	1		E	/0 0	live Oil		
Product C		+				-EVOO		
Lot#						V100		
Production	n Date	1				7/2020		
Expiration	Date					/2023		
	tems	-	Method			ecification	-	sults
Appearanc	е	Ob	servation		GOI	den greenish liquid		PASS
Odor		Sm	iell		Fa	aint oil odor		PASS
	content (mg/kg)		HPLC			0		0
	Hg	Me	thods EAM 4.7	7		<0.010	PAS	S
Heavy Metals	Pb	Me	thods EAM 4.7	7		<0.010	PAS	S
(mg/kg or ppm)	As	Me	thods EAM 4.7	7	(0.012	PAS	S
	Cd	Me	thods EAM 4.	7		<0.010	PAS	SS
Microbiolo	ogical Specificatio	n	Quantity	Units	_	Method		
Tota	I Plate Count		<3000	CFU/g		USP <61>		
	ast & Mold		<300	CFU/g		AOAC FDA (BAM) Ch	-	
	Coliforms		<3 Nega	MPN / g		USP<62>	.4	
Decudor	E. Coli nonas Aeruginosa		Nega		-+	USP<62>	_	
	almonella		Nega		-	USP<62>		
	lococcus aureus		Nega			USP<62>		
SES Researc	2/		<u>10/20/202</u> date	20			5	

Copy of the Health Certificate of animals

		ont ZRT
SPF HIGIÉNIA	pest, Cserkesz utca 90. N STATUSZIGAZOLÁS LTH CERTIFICATE	5
Kórboctani/Pathology dátum/da	ate: 2019. nov. 11.,12. / 11	L.,12. 11. 2019. E,P(M,R)
Kórszövettani/Hystopathology dát		
	m/date: 2019. nov. 07./0	
-		
Bacteriológia/Bacteriology dátu	m/date: 2019. nov. 11./ 1	11.112019. P,E(R,M)
Egér db /mouse piece: 2(M) p	oatkány db/rat piece: 2	2 (R)
Kórokozó/agent	Össz.vizsgált minta	Legutóbbi eredmény
	total tested	latest results
Salmonella spp.	00/ 20	00/4
Citrobacter rodentium	00/20	00/4
Bordetella bronchiseptica	00/20	00/4
Corynebacterium kutscheri	00/20	00/4
Clostridium piliforme	00/ 16	00/00
Pastorella spp.	00/ 24	00/4
Streptococcus spp.	00/ 20	00/4
S. pneumonie		
S. spp. β haemolitic	00/ 20	00/4
Yersinia pseudotuberculosis	00/ 20 00/ 24	00/4
Mycoplasma spp. Streptobacillus moniliformis	00/ 20	00/4 00/4
pseudomonas aeruginosa	00/ 20	00/4
Helicobacter spp.	00/ 20	00/4
Endoparazita	00/ 20	00/4
Ektoparazita	00/ 20	00/4
Protozoonok	00/ 20	00/4
Megjegyzés/Comments: A vizsgálatot 202 biztonsági Hivatal Diagnosztikai Ig. végezt		Lieimiszerianc-
lkt.szám: M 2019-10055030 patkány(R) és		LCOR
D (1	TU	M-COOP,
Dátum/Date: 2019. november. 25.	(`	1200
	to Toxit	and is
	diortien M	tili Kutató Központ jiködő Részvénytársesée
		tur

Copy of the Health Certificate of animals

x					
TOX	-COOP T	oxikolo	ógiai Kutató Közp	oont 7RT	
	ner se braid				
	Contract Contractor State	and the second second second second	est, Cserkesz utca 90.		
			I STATUSZIGAZOLÁ	S	
			TH CERTIFICATE		
			2021. január 11./ <i>11. Jan</i> .	2021.	
Egér (M)db /mou	and the second se		patkány(R) db/rat pie		
Kórokozó/agent	Módszer/ľ	Viethod	The transmission of the second s	Legutóbbi eredmény	
			total tested	latest results	
SDAV/RCV	IFA	R	00/14	00/02	
MHV	IFA	М	00/14	00/02	
Theiler(TMEV) PVM	IFA IFA	M	00/14	00/02	
Sendai	IFA	R,M R,M	00/28 00/28	00/04 00/04	
MVM	IFA	M	00/14	00/02	
MPV	IFA	м	00/14	00/02	
Rat parvoviruses	IFA	R	00/14	00/02	
Rota (EDIM)	IFA	М	00/14	00/02	
MNV Museeleene mulee	IFA	M	00/14	00/02	
Mycoplasma pulmo Clostridium piliform		R,M R,M	00/28	00/04	
Pasteurella pneumo		R,M	00/28 00/28	00/04 00/04	
Rat theilovirus	IFA	R	00/06	00/02	
			1710-00-04 (1979-1972)	/	
625993 HB DD					
Megjegyzés/Comn	nents: A vizsga	álatot 202	1. január 11. <i>BioDoc-Han</i>	nover, Feor-Lynen Str.	
23. D-30625 Hannov	er: 40/WK/21	l témaszá	mon végezte. nce; ELISA= Enzime-linked imm		
rationy-it, Eger-ivi, IrA-	- maneet minur	lonuorescel	nce; ELISA= Enzime-linked imn	hunosorbent assay	
			a VI	COS	
			TOM	-coop	
				6a)	
			te Toria	anont se	
Dátum/Date: 2021. j	anuár 20.		Arkörüen Mükö	Kutaló Kozy arsas	
			Alaira	s/Signature	

Quality control of the diet

			4			
AGROLAB LUFA Gmb	н		4	AGR	OLAI	3 GROUP
DrHell-Str. 6, 24107 Kiel, Germany www.agrolab.de				Your labs.	Your servic	ю.
-				MHD/best bef	ore: 31.05.21	
AGROLAB LUFA DrHell-Str. 6, 2 SSNIFF SPEZIALDIÄTEN G		SSI		i indybese bei	51.05.21	
FERDINAND-GABRIEL-WE 59494 SOEST		Spezialdiät Freigabe / Nach G\ RS	Release			
REPORT 2818859 - 80				Date	mer no.	04.12.202
REPORT 2818859 - 8	62473			Custo	mer no.	100016
Sample no. Project Sample acceptance Date of sampling Customer sample description	14 30 no SN S8	2473 5 ssniff 11.2020 t specified I Rat/Mouse- Zucht+ 106-S008 argen-Nr.: 211 72850	-	garn, 10 mm		
Packaging	pla	stic bag			No. 1	
ୁ o Nutrition values/ingredients	Unit	Result Dec	aration	Substance	Method	
Moisture (4h, 103°C)	%	11,8		OM		2009, III, A : 2009-0
	%	6,3		MO		/2009, III, M : 2009- 02
Crude protein (Nx6,25) Total fat Crude fibre	%	20,5		OM		2009. III, C : 2009-0 2009, III, H, method
Crude fibre	%	4,7		OM		2009-02 2009, III, I : 2009-02
Calculated values (nutrition/ing N-free substances Minerals	%	52,8		OM	ca	culated
Minerals						
	%	0,21		OM		621:2017-10
Calcium (Ca) Phosphorus (P)	%	0,75		OM		621:2017-10 621:2017-10
Parameter-specific measurement uncerta reported results are above the parameter	inties and info specific limit	ormation regarding the meth of quantification.	nod of calculatio	n will be provide	d upon reques	t if the
Explanation: OM = on original matter; DM Start of testing: 30.11.2020 End of testing: 04.12.2020	= on dry mat	ter base				
The results are related only to the sample apply to the samples as received. Duplica	tion of this do	cument or of parts of it requ	ires the authori.	zation from labo	ratory. In acco.	rdance our
AGROLAB LUFA Frau Frederiko Customer Relations Manageme						
ے AGROLAB LUFA Frau Frederiko Customer Relations Manageme		s, Tel. 0431/1228-210				
3						
						page 1 of 1

Quality control of the diet

b H Unit	SSNIFF Spezialdiäten GmbH Frelgabe / Release Nach GV-Solas			OLAB GROUP Your service.
	Spezialdiäten GmbH Freigabe / Release Nach GV-Solas	ΥC	our labs.	YOUF SERVICE.
Unit				
Unit	TRO		Date	14.12.20
Unit			Custor	mer no. 10001
Onic	Result Declara	ation	Substance	Method
mg/kg	<0,05		OM	MP-00238-DE : 2020-06 (LC-
mg/kg	<0,05		OM	MSMS) MP-00238-DE : 2020-06 (LC-
mg/kg	<0,05		OM	MSMS) MP-00238-DE : 2020-06 (LC-
				MSMS) MP-00238-DE : 2020-06 (LC-
				MSMS) MP-00238-DE : 2020-06 (LC-
		_		MSMS) MP-00238-DE : 2020-06 (LC-
				MSMS) MP-00238-DE : 2020-06 (LC-
				MSMS) MP-00238-DE : 2020-06 (LC-
			-	MSMS) MP-00238-DE : 2020-06 (LC-
				MSMS) MP-00238-DE : 2020-06 (LC-
				MSMS) MP-00238-DE : 2020-06 (LC-
				MSMS) MP-00238-DE : 2020-06 (LC-
				MSMS) MP-00238-DE : 2020-06 (LC-
				MP-00238-DE : 2020-06 (LC-
Ing/kg	-0,05			LISMS)
ua/ka	<0.5		OM	QMP_504_KI_52_151 : 2020-11
				(LC-MSMS)
				QMP_504_KL52_151 : 2020-11 (LC-MSMS) QMP_504_KL52_151 : 2020-11
				(LC-MSMS)
				QMP_504_KI_52_151 : 2020-11 (LC-MSMS) calculated
pg/ng	n.g.		OM	Calculated
mg/kg	<0,0002		OM	DIN EN 16215 : 2012-07 (mod.)
				DIN EN 16215 : 2012-07 (mod.) DIN EN 16215 : 2012-07 (mod.)
	<0,0002		OM	DIN EN 16215 : 2012-07 (mod.)
mg/kg	<0,0002		OM	DIN EN 16215 : 2012-07 (mod.)
mg/kg	<0,0001		OM	DIN EN 16215 : 2012-07 (mod.)
	<0.005		OM	EN 15662 : 2018 (mod.)
mg/kg	<0,005		OM	EN 15662 : 2018 (mod.)
mg/kg	n.q.		OM	calculated
	the second se			EN 15662 : 2018 (mod.)
				EN 15662 : 2018 (mod.) EN 15662 : 2018 (mod.)
				EN 15662 : 2018 (mod.)
mg/kg	<0,005		OM	EN 15662 : 2018 (mod.)
mg/kg	<0,005		OM	EN 15662 : 2018 (mod.)
mg/kg	<0,005		OM	EN 15662 : 2018 (mod.)
				calculated EN 15662 : 2018 (mod.)
				EN 15662 : 2018 (mod.) EN 15662 : 2018 (mod.)
mg/kg	<0,010		OM	EN 15662 : 2018 (mod.)
mg/kg	<0,010		OM	EN 15662 : 2018 (mod.)
	mg/kg mg/kg	mg/kg <0,05 mg/kg <0,05	mg/kg <0.05 mg/kg <0.05	mg/kg <0.05 OM mg/kg <0.05

Quality control of the diet

	AGROLAB LUFA Gm	1.1.1	The second se	000	
		Hd	ooniff	AGR	OLAB GROUP
	DrHell-Str. 6. 24107 Kiel, Germany www.agrolab.de		SSNIff Spezialdiäten GmbH Freigabe / Release	Your labs.	Your service.
			Nach GV-Solas	Date	14.12.20
	REPORT 2818877 - 862456			Custo	mer no. 100018
		Unit	Result Declaration	Substance	Method
	o,p-DDD	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	o.p-DDE	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
-	o.p-DDT	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	p.p-DDD	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
syllinui	p,p-DDE p,p-DDT	mg/kg mg/kg	<0,005	OM	EN 15662 : 2018 (mod.) EN 15662 : 2018 (mod.)
	Sum DDT-isomers	mg/kg	n.q.	OM	calculated
	Diazinon	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
2	Dichlorvos	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
	Dimethoate	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
1	Endosulfan alpha	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	Endosulfan beta	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	Endosulfansulfat	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	Sum endosulfan-alpha, -beta, - sulfat	mg/kg	n.q.	OM	calculated
	Endrin	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
ł	Ethion	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
	Fenitrothion	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
1	HCH-alpha	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	HCH-beta	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	HCH-delta HCH-epsilon	mg/kg mg/kg	<0,005	MO OM	EN 15662 : 2018 (mod.) EN 15662 : 2018 (mod.)
	Hexachlorobenzene	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.) EN 15662 : 2018 (mod.)
	Sum alpha-, beta-, delta-,	mg/kg	n.q.	OM	calculated
1	epsilon-HCH	0			
1	HCH-gamma (Lindane)	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	Heptachlor Heptachlorepoxide-cis	mg/kg mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	Heptachlorepoxide-trans	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.) EN 15662 : 2018 (mod.)
	Sum heptachlor.	mg/kg	n.q.	OM	calculated
	heptachlorepoxide	inging		ON	Calculated
	Malathion	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
	Mecarbame	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
	Methidathion	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
	Methoxychlor	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	Mirex	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	Nitrofen Parathion-methyl	mg/kg mg/kg	<0,005	OM	EN 15662 : 2018 (mod.) EN 15662 : 2018 (mod.)
	Parathion-ethyl	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
F	Quintozene	mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	Phorate	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
	Pirimiphos-ethyl	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
н	Pirimiphos-methyl	mg/kg	0,10	OM	EN 15662 : 2018 (mod.)
	Profenofos	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
	Sulfotep	mg/kg	<0,010	OM	EN 15662 : 2018 (mod.)
	Tecnazene	mg/kg mg/kg	<0,005	OM	EN 15662 : 2018 (mod.)
	Tetradifon	11111/K(1	<0,005	OM	EN 15662 : 2018 (mod.)

Quality control of the diet

	4	
AGROLAB LUFA GmbH	ka 🕮 🚑 🚑	B GROUP
DrHell-Str. 6, 24107 Kiel, Germany www.agrolab.de	Your labs. Your serv	ice.
	Date	14.12.202
	Customer no.	100018
REPORT 2818877 - 862456 Qualitative detection of antibiotic activity using agar well di	iffusion method	
Applied test microorganisms: Bacillus cereus ATCC 11778, Baci 9341, Micrococcus luteus ATCC 10240, Staphylococcus aureus (Amoxicillin, Ampiciallin, Peniciallin), Lincomycin, macrofides (spira doxycycline, oxytetracycline, tetracycline), trimethoprim (synergis The presence of antimicrobial agents is indicated by inhibition gr organic acids, essential oils, secondary metabolites of plants and Remark to Sum aldrin, dieldrin: Aldrin and dieldrin combined exp Remark to Sum aldrin, dieldrin: Aldrin and dieldrin combined exp Remark to Sum DDT-Isomers: Sum of p.p'-DDT, o.p'-DDT, p.p' Remark to Sum endosulfan-alpha, -beta, -sulphate: Sum of alphi	ATĆC 6538P. Detectable antimicrobial agents: 8-Lactam-Arifi mycin, tylosin), tiamulin, virginiamycin, tetracyclines (chloretra stulfonamides), florfenicol, lasalocid, monensin, narasin, salir owth zones. Growth of test microorganisms can also be inhibit d yeasts, metal ions, antioxidants and preserving agents. ressed as dieldrin (F). rdan (F)(R). -DDE and p,p-TDE (DDD) expressed as DDT (F).	biotika cycline, omycin. ad by
(F). Remark to HCH-alpha: Hexachlorocyclohexane (HCH), alpha-iso Remark to HCH-beta: Hexachlorocyclohexane (HCH), beta-isom Remark to Sum alpha-beta-delta-epsilon-HCH: Hexachlorocycl Remark to HCH-aamma (Lindane): Lindane (Gamma-isomer of 1	omer (F). her (F). ohexane (HCH), sum of isomers, except the gamma isomer. hexachlorocyclohexane (HCH)) (F).	
Remark to Sum heptachlor, heptachlorepoxide: Sum of heptachl Start of testing: 30.11.2020 End of testing: 14.12.2020	or and heptachior epoxide expressed as heptachior (F).	
The results are related only to the samples tested. In cases when apply to the samples as received. Duplication of this document o agreement in writing in the order confirmation, the results in this to paragraph 7.8.1.3.	r of parts of it requires the authorization from laboratory. In acc	ordance our
The results are related only to the samples tested. In cases when apply to the samples as received. Duplication of this document of agreement in writing in the order confirmation, the results in this to paragraph 7.8.1.3.		
25:201		
AGROLAB LUFA Frau Frederike Borchers, Tel. (0431/1228-210	
U Customer Relations Management feed		
N EN		
ording		
acc		
credit		
are ac		
ment		
docu		
in this		
orted		
ep		
activities reported in this document are accredited ac		
The		page 4 of 4

Quality control of the drinking water

Government Office of Capital B Public Health Department Váci út 174. Budapest H-1138 Hungary	udapest
Source of water sample:	Toxi-Coop Zrt. Animal house, room no. 11 Berlini utca 47-49. H-1045 Budapest Hungary
Sample taken by:	Government Office of Capital Budapest, Public Health Department Accredited sampling
Date of sampling:	October 07, 2020
Registry no.	2020/ 04519
Date of report:	October 12, 2020
Bacteriology:	
Coliform no.	0/ 100 mL
Escherichia coli	0/ 100 mL
Enterococcus	0/ 100 mL
Pseudomonas aeruginosa	0/ 100 mL
Total colony no. at 37 °C	4/ 1 mL
Total colony no. at 22 °C	0/ 1 mL
Water chemistry:	
Color:	Colorless
Transparency:	0.19 FNU
Odor:	0 Ball
Permanganate index (KOI ps.):	0.47 mg/L
Chloride:	17 mg/L
Nitrate:	4.81 mg/L
Nitrite:	<0.01 mg/L
Ammonium:	<0.02 mg/L
Total hardness:	134 CaO mg/L
Iron:	<50 µg/L
Manganese:	$<10 \ \mu g/L$
Sulfate:	30.2 mg/L
Sp. Conductivity:	392 μ S/cm (20 °C)
T. (21.4.00
Temperature:	21.4 °C
pH	7.31

The water sample is suitable drinking water for human on the basis of the examined specifications. The qualification was made according to the threshold limits declared by the Decree of the Hungarian Government no. 201/2001(X.25). (Translation of the original certificate; see pages 2 and 3 of Appendix 12)

Quality control of the drinking water

				1/2 oldal
			t Föváros yhivatala	L.
		NÉPEGÉSZSÉG	ÚGYI FŐOSZTÁ	LY
	1	lvóvíz vizsgál:	ati jegyzőkön	yv
Iktatószám:	2020/ 04519	Kód:		Megrendelö;
Minta származása:	mosogató ellenőrző	. 5/Á épület 2. em Berlini út 47-49.	. 11. állatszoba	Toxi - Coop Zrt. Budapest Magyar Jakobinusok tere 4. B. 5/2 11222
A mintát vette:	BFKH NF Labo Akkreditált min	ratóriumi Osztály tavétel	1	
Mintavétel: 2020. 10). 07. 08:40 Átvétel: 2	2020. 10. 07.	Vizsgálat időta	rtama: 2020. 10. 07 10.12. Kiadás: 2020. 10.
Helyszíni vizsgálatok		×		
Min Vizsgálat Víz hőmérsékle	t	21,4	Mértékegység	Szabvány MSZ 448-2 :1967 1.fejezet (visszavont szabvány)
pH (25 °C)		7,31		MSZ 1484-22:2009 8.1. szakasz
Bakteriológiai vizsgál	atok:	Entile	Martheonyla	
Min Vizsgálat Coliformszám			Mértékegység /100ml	Szabvány MSZ EN ISO 9308-1:2015
Escherichia coli	-szám		/100ml	MSZ EN ISO 9308-1:2015
Enterococcus-sa		-	/100mL	MSZ EN ISO 7899-2:2000
Pseudomonas a Telepszám 37°0			/100 mL /1mL	MSZ EN ISO 16266:2008 MSZ EN ISO 6222: 2000
Telepszám 22°C			/lmL	MSZ EN ISO 6222: 2000
Kémiai vizsgálatok:		Esták	Mértékegység	Szabvány
Kémiai vizsgálatok: Min Vizsgálat		1 1 1 1 m. 1 1 . 1		
Kémiai vizsgálatok:		színtelen		MSZ EN ISO 7887:1998 2. fejezet (visszavont szabyány)
Kémiai vizsgálatok: Min Vizsgálat # Szín		színtelen	FNU	MSZ EN ISO 7087-1996 2. rejezet (visszavolit szabvány) MSZ EN ISO 7027-1:2016
Kémiai vizsgálatok: Min Vizsgálat		színtelen 0,19	FNU Ball	szabvány) MSZ EN ISO 7027-1:2016 MSZ 448-35:1965 2.1 szakasz (visszavont
Kémiai vízsgálatok: Min Vizsgálat # Szín # Zavarosság # Szag	alau KOIa	színtelen 0,19 0	Ball	szabvány) MSZ EN ISO 7027-1:2016 MSZ 448-35:1965 2.1 szakasz (visszavont szabvány)
Kémiai vízsgálatok: Min Vízsgálat # Szín # Zavarosság # Szag Kémiai Oxigéni	gény KOIp	színtelen 0,19 0 0,47	Ball mg/i	szabvány) MSZ EN ISO 7027-1:2016 MSZ 448-35:1965 2.1 szakasz (visszavont szabvány) MSZ 448-20:1990
Kémiai vizsgálatok: Min Vizsgálat # Szín # Zavarosság # Szag	gény KOIp	színtelen 0,19 0 0,47	Ball mg/l mg/l	szabvány) MSZ EN ISO 7027-1:2016 MSZ 448-35:1965 2.1 szakasz (visszavont szabvány)
Kémiai vízsgálatok: Min Vízsgálat # Szín # Zavarosság # Szag Kémiai Oxigéni Klorid	gény KOIp	színtelen 0,19 0 0,47 17	Ball mg/l mg/l mg/l	szabvány) MSZ EN ISO 7027-1:2016 MSZ 448-35:1965 2.1 szakasz (visszavont szabvány) MSZ 448-20:1990 MSZ 1484-15:2009 MSZ 1484-13:2009 5.fejezet MSZ 1484-13:2009 6.fejezet
Kémiai vízsgálatok: Min Vízsgálat # Szín # Zavarosság # Szag Kémiai Oxigéni Klorid Nitrát Nitrát Anmónium		színtelen 0,19 0,47 17 4,81 <0.01 <0.02	Ball mg/l mg/l mg/l mg/l mg/l	szabvány) MSZ EN ISO 7027-1:2016 MSZ 448-35:1965 2.1 szakasz (visszavont szabvány) MSZ 448-20:1990 MSZ 1484-15:2009 MSZ 1484-13:2009 5.fejezet MSZ 1484-13:2009 6.fejezet MSZ 18O 7150-1:1992
Kémiai vízsgálatok: Min Vizsgálat # Szín # Zavarosság # Szag Kémiai Oxigéni Klorid Nitrát Nitrít Ammónium Össz. keménysé		színtelen 0,19 0 0,47 17 4,81 <0.01 <0.02 134	Ball mg/l mg/l mg/l mg/l mg/l CaO mg/l	szabvány) MSZ EN ISO 7027-1:2016 MSZ 448-35:1965 2.1 szakasz (visszavont szabvány) MSZ 448-20:1990 MSZ 1484-15:2009 MSZ 1484-13:2009 5.fejezet MSZ 1484-13:2009 6.fejezet MSZ 15O 7150-1:1992 MSZ 448-21:1986 3. fejezet
Kémiai vízsgálatok: Min Vízsgálat # Szín # Zavarosság # Szag Kémiai Oxigéni Klorid Nitrát Nitrát Anmónium		színtelen 0,19 0 0,47 17 4,81 <0.01 <0.02 134 <50	Ball mg/l mg/l mg/l mg/l CaO mg/l µg/l	szabvány) MSZ EN ISO 7027-1:2016 MSZ 448-35:1965 2.1 szakasz (visszavont szabvány) MSZ 448-20:1990 MSZ 1484-15:2009 MSZ 1484-13:2009 5.fejezet MSZ 1484-13:2009 6.fejezet MSZ 18O 7150-1:1992
Kémiai vízsgálatok: Min Vizsgálat # Szín # Zavarosság # Szag Kémiai Oxigéni Klorid Nitrát Nitrát Amrónium Össz. keménysé Vas		színtelen 0,19 0,47 17 4,81 <0.01 <0.02 134 <50 <10 30,2	Ball mg/l mg/l mg/l mg/l mg/l CaO mg/l	szabvány) MSZ EN ISO 7027-1:2016 MSZ 448-35:1965 2.1 szakasz (visszavont szabvány) MSZ 448-20:1990 MSZ 1484-15:2009 MSZ 1484-13:2009 5.fejezet MSZ 1484-13:2009 6.fejezet MSZ 1484-13:2009 6.fejezet MSZ 1484-13:1992 MSZ 448-21:1986 3.fejezet MSZ 448-4:1983 2.fejezet (visszavont szabvány)

Quality control of the drinking water

		212 - 14-1	
	Í.	2/2 oldal	
	Ę		
	Budapes Kormán	it Főváros iyhivatala	
	NÉPEGÉSZSÉG	GÜGYI FÖOSZTÁLY	
	Ivóvíz vizsgál:	ati jegyzőkönyv	
Iktatószám:	2020/ 04519 Kód:	Megrendelő:	
Minta származása:	Toxi - Coop Zrt. 5/Á épület 2. em	•	
Printin Startification.	mosogató	Budapest	
	ellenőrző 1045 Budapest, Berlini út 47-49.	Magyar Jakobinusok tere 4. B. 5/2 11222	
	DEVI NE Laboration (Outline		
A mintát vette:	BFKH NF Laboratóriumi Osztály Akkreditált mintavétel		
Mintavétel: 2020. 10. 0'	7. 08:40 Átvétel: 2020. 10. 07.	Vizsgálat időtartama: 2020. 10. 07 10.12. Kiadás: 2020. 10. 12	
Minősítés a 201/2001. (X.) # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati eredmé A Vizsgálati jegyzőkönyve kiadványozó írásos engedé	cért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat et a vizsgáló laboratórium engedélye nél ilye szükséges.	rtékek szerint. evő vállal felelősséget.	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati eredmé A Vizsgálati jegyzőkönyve	25.) kormányrendeletben foglalt határéz lat. céért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél ilye szükséges.	rtékek szerint. evő vállal felelősséget. tkoznak.	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati eredmé A Vizsgálati jegyzőkönyve kiadványozó írásos engedé A láirással, pecsét nélkül hi	25.) kormányrendeletben foglalt határéz lat. céért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél ilye szükséges.	rtékek szerint. evő vállal felelősséget. tkoznak. Ikül csak teljes terjedelmében lehet másolni, kivonatolásához a	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati eredmé A Vizsgálati jegyzőkönyve kiadványozó írásos engedé A láirással, pecsét nélkül hi	25.) kormányrendeletben foglalt határéz lat. sért és a minta azonosságáért a mintave myek kizárólag a vizsgált mintára vonat ta vizsgáló laboratórium engedélye nél lye szűkséges. teles.	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati eredmé A Vizsgálati jegyzőkönyve kiadványozó írásos engedé A láirással, pecsét nélkül hi	25.) kormányrendeletben foglalt határéz lat. céért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél ilye szükséges. iteles. dr. Sára	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határér lat. kért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára kormánymegbizo 21. T	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati eredmé A Vizsgálati jegyzőkönyve kiadványozó írásos engedé A láirással, pecsét nélkül hi	25.) kormányrendeletben foglalt határér lat. kért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára kormánymegbizo 21. T	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határér lat. "cért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára: kormánymegbizo	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határér lat. "cért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára: kormánymegbizo	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határér lat. "cért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára: kormánymegbizo	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határér lat. "cért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára: kormánymegbizo	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határér lat. "cért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára: kormánymegbizo	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határér lat. "cért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára: kormánymegbizo	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határér lat. "cért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára: kormánymegbizo	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határér lat. "cért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára: kormánymegbizo	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határér lat. "cért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél itye szűkséges. iteles. dr. Sára: kormánymegbizo	rtékek szerint. evő vállal felelősséget. tkoznak. lkül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határéz lat. sért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél lye szükséges. iteles. dr. Sára kormánymegbizo 21 1 Edit ii irúnyító	rtékek szerint. tkoznak likül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ht megbízásából Dr. Kovács Gábor osztályvezető	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati rendmé A Vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határéz lat. séřt és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél lye szűkséges. teles. dr. Sára kormánymegbizo 24. * a Edit ni irúnyító Laboratórium 1138 Budapest. Váci út 1741550 Budape	rtékek szerint. tkoznak. likül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ht megbízásából Dr. Kovács Gábor osztályvezető	
Minősítés a 201/2001. (X. # - Nem akkreditált vizsgá A mintavétel szakszerűség A közölt vizsgálati rendmé A Vizsgálati jegyzőkönyve kiadványozó írásos engedé Aláírással, pecsét nélkül hi Budapest, 2020. 10. 12.	25.) kormányrendeletben foglalt határéz lat. tért és a minta azonosságáért a mintave inyek kizárólag a vizsgált mintára vonat t a vizsgáló laboratórium engedélye nél tye szükséges. iteles. dr. Sára kormánymegbízo ta Edit ni irányító Laboratórium	rtékek szerint. koznak likül csak teljes terjedelmében lehet másolni, kivonatolásához a Botond ott megbízásából Dr. Kovács Gábor osztályvezető	

Copy of the Certificate of Quality of the bedding material

. RETTENMAIER &	R SÖHNE JRS	Fasern aus der Natur Fibers designed by Natu
ETTEMATINE & SCHNE • 734 94 Resentence (Germany)		73494 Rovensorg (Germany) Phone: + 49 (0) 7987 / 152 0 Fac. + 49 (0) 7987 - 152 222 mto⊕re.de stwerpe.de
	Certificate of Quality	
TO WHOM IT MAY CONCER	RN .	
Customer:	Toxi-Coop Safety Toxicol. Study Center Herr Zoltán Balogh Cserkesz utca 90 H 1103 Budapest	
Product:	SAFE 3/ 4-S-FASERN	
Lot number:	03027201125 = 6.750,00 kg	
Quantity:	540 bags á 12,50 kg 20 palets á 337,50 kg	
Net weight:	11.137,50 kg	
Country of origin:	Federal Republic of Germany	
Manufacturing date:	2020-11-11	
Best before:	at least 3 years from manufacturin	g date
With the comminution and faxtitio	of first-class quality d safe from the ecological point of view. us subsequent drying of the product +180 ispatch is free from hazardous plant dise.	0° Celcius are obtained so ases and vermines.
Holzmühle, 2020-12-02		
RETTENMAIER & SÖHNE GME		
Ike Voss		
Elke Voss		
Elke Voss		
Elke Voss		

Historical control

Hematology and blood coagulation Han:WIST Rat Male: 9 - 10 weeks old

Animal	WBC	NEU	LYM	MONO	EOS	BASO	RBC	HGB	HCT	MCV	MCH	MCHC	PLT	RET	PT	APTT
number	[x10 [*] /L]	[%]	[%]	[%]	[%]	[%]	[x10 ⁴¹ /L]	[g/L]	[L/L]	[fL]	[pg]	[g/L]	[x10 ^{*/} L]	[%]	[sec]	[sec]
1760 1762 1771	4,9 6,1 7,9	15,3 15,2 10,2	80,2 80,7 87,0	2,6 3,0 1,6	1,6 0,9 0,8	0,0 0,0 0,1	7,93 7,80 8,60	160 159 167	0,46 0,45 0,48	57,5 57,5 56,1	20,2 20,3 19,4	351 353 346	1036 974 892	2,95 3,39 2,89	10,1 10,7	11,1 12,9
1775	7.6	13,4	82,7	2,0	1,2	0,1	8,19	166	0,48	59,0	20,3	344	1039	4,04	10,2	13,1
1780	7.9	12,2	82,5	3,3	1,3	0,0		169	0,48	59,4	20,7	348	1072	3,39	10,6	15,2
1814	10,5	7,6	88,5	2,3	1,0	0,1	8,49	164	0,48	56,2	19,3	343	864	2,37	10,3	9,9
1815	10,1	8,6	88,8	2,0	0,4	0,0	8,36	165	0,47	56,8	19,8	348	973	2,98	10,4	12,8
1822	9,6	9,5	87,8	1,6	0,7	0,1	8,11	169	0,47	58,4	20,8	356	912	2,99	10,2	15,8
1823	7,2	15,3	81,9	1,8	0,6	0,1	8,47	168	0,48	56,6	19,8	351	942	3,26	10,0	11,6
1824 1093 1094 1098	9,7 8,9 8,2	10,7 9,7 8,3 13,1	86,5 87,8 89,0 84,2	1,6 1,3 1,6 1,5	0,9 0,6 0,8 0,8	0,0 0,2 0,1 0,1	8,36 8,26 8,16 7,85	170 172 164 158	0,48 0,49 0,48 0,45	57,5 59,6 58,9 57,7	20,3 20,8 20,1 20,1	353 349 341 348	1066 918 990 1069	2,72 2,99 3,47 3,39	10,4 10,0 9,8 10,0	15,1 13,8 11,1 13,4
1102	9,5	13,9	82,7	2,0	0,9	0,0	8,00	165	0,48	59,8	20,6	344	1100	3,86	10,0	10,5
1107	8,3	15,5	80,4	2,9	0,7	0,1	8,49	164	0,48	56,7	19,4	341	780	3,85	10,0	12,8
596	9,7	11,8	84,7	1,8	0,8	0,1	8,76	167	0,50	57,1	19,1	334	1059	2,99	9,9	12,6
599	5,0	†45.8	†39.2	†6.6	7,9	0,2	8,33	151	0,45	54,4	18,1	334	638	2,58	10,1	14,3
601	7,8	16,2	78,8	2,7	1,6	0,1	8,14	164	0,48	58,5	20,2	345	1041	3,06	10,0	10,9
604	9,3	10,1	86,9	2,0	0,6	0,1	8,58	163	0,48	56,0	19,1	340	816	3,02	10,2	13,7
605	8,3	12,1	82,6	1,7	3,0	0,1	8,24	158	0,48	57,3	19,2	335	824	2,83	9,8	11,6
Mean	8,4	12,0	84,4	2,1	1,4	0,1	8,26	164,2	0,47	57,6	19,9	345,2	950,3	3,15	10,1	12,7
SD	1,7	2,7	3,3	0,6	1,6	0,1	0,26	5,0	0,01	1,4	0,7	6,4	120,6	0,43	0,2	1,7
n	20	19	19	19	20	20	20	20	20	20	20	20	20	20	19	19
Min	4,9	7,6	78,8	1,3	0,4	0,0	7,80	151	0,45	54,4	18,1	334	638	2,37	9,8	9,9
Max	11,2	16,2	89,0	3,3	7,9	0,2	8,76	172	0,50	59,8	20,8	356	1100	4,04	10,7	15,8

Remark: - = No data (coagulated sample)

† = Excluded from the evaluation

Historical control - Collected data - 2018; Equipments: Hematology, Siemens ADVIA120; Blood coagulation, Sysmex CA-1500

Historical control

Hematology and blood coagulation Han:WIST Rat Female: 9 - 10 weeks ol

Animal	WBC	NEU	LYM	MONO	EOS	BASO	RBC	HGB	нст	MCV	MCH	MCHC	PLT	RET	PT	APTT
number	[x10 [*] /L]	[%]	[%]	[%]	[%]	[%)]	[10 ¹¹ /L]	[g/L]	[L/L]	[fL]	[pg]	[g/L]	[x10 ⁹ /L]	[%]	[sec]	[sec]
1794	5,5	10,6	85,9	1,5	1,2	0,1	7,74	157	0,46	60,0	20,4	340	994	3,42	9.7	10,0
1796	5,8	11,0	84,1	2,0	2,5	0,1	8,83	172	0,49	55,5	19,5	351	1099	2,18	9.7	11,0
1797	3,5	12,8	83,3	1,6	1,7	0,0	8,17	166	0,48	58,8	20,3	345	792	3,28	9,6	12,7
1801	5,0	12,8	82,8	2,1	1,6	0,1	8,12	162	0,45	55,9	19,9	356	1140	3,16	9,7	9,6
1802	7,1	11,0	86,0	1,7	0,8	0,1	7,78	157	0,44	56,1	20,1	359	768	3,13	10,0	12,7
1836	5,6	8,5	88,8	1,5	0,9	0,2	8,59	164	0,47	55,2	19,1	345	1004	1,86	9,7	13,1
1841	4,6	10,6	85,6	2,0	1,3	0,1	7,47	145	0,41	55,5	19,5	351	915	2,54	9,5	19,1
1843	5,9	26,9	67,7	3,2	1,9	0,1	8,15	165	0,48	59,3	20,2	341	1000	2,63	10,0	12,3
1845	7,4	14,9	80,2	2,9	1,1	0,1	7,92	164	0,46	57,5	20,8	361	1230	2,23	10,0	15,4
1858	7,4	6,7	90,4	1,8	0,6	0,0	8,69	167	0,48	55,0	19,2	349	993	2,35	10,0	14,4
1120	5,9	9,6	86,8	1,2	1,9	0,1	8,14	161	0,46	56,1	19,7	352	772	3,44	9,7	13,1
1128	4,8	13,0	83,5	1,2	1,7	0,1	8,48	163	0,46	54,4	19,2	352	1049	2,71	9,9	13,1
1130	8,3	17,2	77,4	2,6	2,2	0,1	8,85	162	0,47	53,4	18,3	344	785	2,01	9,8	12,8
1131	5,8	7,0	90,6	0,9	0,9	0,0	8,39	150	0,44	52,6	17,8	339	991	2,79	9,5	12,6
612 617	5,8 6,3 6,0 5,4	7,0 6,5 14,4 12,6	90,8 90,8 79,5 82,6	0,9 1,4 1,2 2,9	0,9 0,6 4,4 1,1	0,0 0,0 0,1 0,0	8,05 8,05 7,62 8,06	150 153 147 150	0,44 0,44 0,44 0,45	55,0 57,9 56,2	19,0 19,0 19,3 18,7	345 334 332	994 994 1134 956	2,79 3,23 2,87 1,97	9,5 9,8 9,5 9,5	12,6 14,7 12,8 14,6
621	4,7	13,4	82,5	2,1	1,6	0,1	8,24	152	0,45	55,2	18,4	334	799	2,41	9,6	11,8
622	6,0	17,7	78,5	2,2	1,2	0,0	8,20	154	0,46	56,4	18,8	332	858	2,27	9,5	14,9
629	5,2	14,7	81,6	2,1	1,2	0,0	8,28	157	0,48	58,0	19,0	327	797	2,67	9,5	13,8
Mean	5,8	12,6	83,4	1,9	1,5	0,1	8,19	158,4	0,46	56,2	19,4	344,5	953,5	2,66	9,7	13,2
SD	1,1	4,6	5,4	0,6	0,9	0,1	0,38	7,3	0,02	1,9	0,8	9,6	138,8	0,50	0,2	2,1
n	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Min	3,5	6,5	67,7	0,9	0,6	0,0	7,47	145	0,41	52,6	17,8	327	768	1,86	9,5	9,6
Max	8,3	26,9	90,8	3,2	4,4	0,2	8,85	172	0,49	60,0	20,8	361	1230	3,44	10,0	19,1

Historical control - Collected data - 2018; Equipments: Hematology, Siemens ADVIA120; Blood coagulation, Sysmex CA-1500

Historical control

Clinical chemistry Han:WIST Rat Male: 9 - 10 weeks old

Animal	ALT	AST	GGT	ALP	TBIL	CREA	UREA	GLUC	CHOL	Pi	Ca ⁺⁺	Na ⁺	K ⁺	CI	ALB	TPROT	A/G
number	[U/L]	[U/L]	[UIL]	[U/L]	[µmcl/L]	[µmol/L]	[mmol/L]	[mmol/L]	[mmol/L]	[mmol/L]	[mmol/L]	[nmol/L]	[numol/L]	[mmol/L]	[g/L]	[g ^l]	
1760	45	105	bal	182	1,4	19	5,9	4,24	1,77	3,18	2,64	144,3	5,27	98,8	41,8	55,5	3,1
1762	50	114	bal	230	1,5	23	7,2	4,07	1,68	3,09	2,63	144,3	4,90	97,6	43,0	57,5	3,0
1771	47	100	bal	123	0,8	21	8,0	4,83	2,32	2,76	2,83	143,6	4,77	98,3	44,7	63,4	2,4
1775	44	106	bal	153	1,6	29	10,3	3,99	2,52	3,03	2,77	144,5	5,28	98,3	44,6	63,1	2,4
1780	50	108	bal	129	2,3	23	6,7	3,95	2,42	2,51	2,68	145,5	4,43	99,4	44,4	60,4	2,8
1814	56	136	bal	173	2,2	21	6,1	4,40	2,55	3,12	2,81	142,8	5,61	98,9	42,1	58,7	2,5
1815	47	89	bal	123	1,8	19	6,1	4,04	2,06	3,20	2,76	143,3	4,83	98,3	42,7	62,2	2,2
1822	44	95	bal	194	1,7	23	8,2	4,48	3,01	2,89	2,83	144,5	4,47	96,9	44,1	59,7	2,8
1823	51	81	bal	184	1,1	20	8,7	5,43	2,73	3,10	2,96	142,9	4,71	94,5	45,0	62,7	2,5
1824	48	100	bal	239	2,2	22	6,8	4,48	2,43	2,89	2,70	143,7	4,25	97,9	45,8	63,4	2,6
1093	56	93	bal	230	1,6	20	7,3	5,75	2,22	3,11	2,80	144,2	4,50	97,0	44,5	62,9	2,4
1094	53	104	bal	242	1,5	23	6,6	5,34	2,86	2,52	2,63	143,9	4,40	99,3	41,4	59,8	2,3
1098	41	89	bal	249	1,5	21	6,0	5,94	2,14	3,09	2,71	144,5	4,74	98,1	43,9	61,3	2,5
1102	54	89	bal	208	2,2	23	9,4	5,56	1,94	3,31	2,77	147,6	5,19	101,8	43,2	62,7	2,2
1107	51	87	bal	262	1,5	19	5,6	4,66	2,61	2,98	2,82	143,7	4,83	99,1	41,7	59,6	2,3
596	47	102	bal	169	1,6	17	9,2	5,70	2,71	2,91	2,81	141,6	4,86	96,1	43,6	63,3	2,2
599	†179	†368	bal	212	1,3	21	9,5	5,25	2,20	2,83	2,76	141,4	4,87	97,9	39,9	59,7	2,0
601	61	96	bal	131	1,4	20	10,9	5,73	2,38	3,21	2,77	141,9	5,45	97,8	42,0	60,4	2,3
604	35	72	bal	196	1,7	20	6,7	4,83	1,84	3,16	2,63	143,9	4,56	99,1	41,5	57,7	2,6
605	54	92	bal	173	1,3	18	8,7	5,22	2,42	3,06	2,82	144,4	4,59	99,4	43,0	59,9	2,5
Mean	49,2	97,8	-	190,1	1,6	21,1	7,7	4,9	2,3	3,0	2,8	143,8	4,8	98,2	43,1	60,7	2,5
SD	6,0	13,7		43,8	0,4	2,6	1,6	0,7	0,4	0,2	0,1	1,4	0,4	1,5	1,5	2,3	0,3
n	19	19		20	20	20	20	20	20	20	20	20	20	20	20	20	20
Min	35	72	:	123	0,8	17	5,6	4,0	1,7	2,5	2,6	141,4	4,3	94,5	39,9	55,5	2,0
Max	61	136		262	2,3	29	10,9	5,9	3,0	3,3	3,0	147,6	5,6	101,8	45,8	63,4	3,1

Remark: bql = Below the quantification limit - 7 U/L

- = No data

 \uparrow = Excluded from the evaluation

Historical control - Collected data - 2018; Equipment: Cobas C311

Historical control

Clinical chemistry Han:WIST Rat Female: 9 - 10 weeks old

Animal	ALT	AST	GGT	ALP	TBIL	CREA	UREA	GLUC	CHOL	Pi	Ca ⁺⁺	Na*	K'	CI	ALB	TPROT	A/G
number	[U/L]	[U/L]	[UIL]	[UL]	[µmol/L]	[µmol/L]	[mmol/L]	[mmol/L]	[mmol/L]	[mmol/L]	[mmol/L]	[mmol/L]	[mmol/L]	[mmol/L]	[g/L]	[g/L]	
1794	38	145	bal	188	0,9	31	8,0	3,28	2,02	2,81	2,54	147,3	4,08	103,7	44,2	58,7	3,0
1796	26	87	bal	179	1,5	22	5,8	3,89	2,20	2,71	2,62	144,9	4,27	100,2	47,1	61,7	3,2
1797	39	134	bal	121	1,2	25	5,9	3,40	2,07	2,71	2,69	146,2	4,41	99,1	47,6	61,8	3,4
1801	36	110	bal	129	2,0	27	6,5	3,62	1,89	2,80	2,61	139,8	4,35	98,2	48,2	60,8	3,8
1802	42	100	bal	122	1,0	26	6,1	4,20	1,68	2,48	2,63	142,3	3,69	98,7	45,5	60,5	3,0
1836	30	85	bal	143	1,3	26	6,6	4,22	1,71	2,41	2,66	143,7	4,37	100,3	46,5	61,7	3,1
1841	38	131	bal	101	1,6	32	12,2	4,69	2,54	2,72	2,69	145,6	4,19	100,1	47,2	67,9	2,3
1843	42	111	bal	129	1,7	32	9,0	4,34	2,24	2,69	2,59	144,8	4,54	97,0	45,5	61,1	2,9
1845	30	83	bal	108	1,2	25	7,5	4,21	2,17	2,23	2,63	143,3	4,15	99,6	45,5	61,8	2,8
1858	37	79	bal	75	1,1	24	7,0	5,50	2,27	2,14	2,63	144,4	4,19	100,6	47,1	62,9	3,0
1120	36	98	bal	134	1,1	26	6,9	4,56	1,85	2,37	2,65	144,6	4,74	101,2	44,3	60,6	2,7
1128	54	93	bal	172	1,7	23	4,8	5,59	1,47	2,04	2,60	144,3	3,98	100,8	47,0	65,0	2,6
1130	60	91	bal	133	1,7	32	7,8	4,38	1,40	2,33	2,58	143,4	3,92	101,5	43,4	59,1	2,8
1131	53	126	bal	87	1,0	25	7,2	3,97	1,77	2,18	2,59	144,2	3,87	103,4	44,6	62,6	2,5
1136	39	89	bal	102	1,5	29	6,3	5,13	1,41	1,82	2,65	144,5	3,98	101,1	50,3	68,4	2,8
612	32	67	bal	66	2,0	21	7,2	5,45	1,95	2,43	2,73	142,4	4,27	101,2	49,5	65,3	3,1
617	34	91	bal	152	1,1	23	6,3	4,56	2,09	2,82	2,61	141,8	4,56	99,9	42,4	60,3	2,4
621	35	85	bal	168	1,8	23	6,4	4,94	2,03	2,55	2,60	141,9	4,25	99,8	45,2	62,7	2,6
622	47	81	bal	101	0,9	22	6,0	6,18	2,06	2,42	2,58	142,2	3,76	100,7	42,0	61,0	2,2
629	40	73	bal	117	1,1	21	7,1	5,88	2,45	2,78	2,70	141,6	4,12	99,2	45,0	65,8	2,2
Mean	39,4	98,0	:	126,4	1,4	25,8	7,0	4,6	2,0	2,5	2,6	143,7	4,2	100,3	45,9	62,5	2,8
SD	8,5	21,5		33,7	0,4	3,7	1,5	0,8	0,3	0,3	0,0	1,8	0,3	1,6	2,2	2,7	0,4
n	20	20		20	20	20	20	20	20	20	20	20	20	20	20	20	20
Min	26	67		66	0,9	21,0	4,8	3,3	1,4	1,8	2,5	139,8	3,7	97,0	42,0	58,7	2,2
Max	60	145		188	2,0	32,0	12,2	6,2	2,5	2,8	2,7	147,3	4,7	103,7	50,3	68,4	3,8

Remark: bql = Below the quantification limit - 7 U/L - = No data

Historical control - Collected data - 2018; Equipment: Cobas C311

Historical control

Organ weight Han:WIST Rat Male: 9 - 10 weeks old

Animal	Body					Organ w	eight (g)				
number	weight	Brain	Liver	Kidneys	Heart	Thymus		Testes	Epididy- mides	Seminal vesicles† Prostate	Adrenal glands
1760	265	1,97	8,18	2,07	0,81	0,76	0,77	3,10	0,74	1,20	0,067
1762	251	2,06	7,09	1,85	0,80	0,71	0,49	3,23	0,75	1,24	0,050
1771	249	2,04	7,80	1,69	0,70	0,50	0,55	2,86	0,70	0,99	0,053
1775	265	1,97	8,53	2,21	0,88	0,80	0,66	2,94	0,84	0,87	0,087
1780	259	1,95	7,71	2,18	0,94	0,93	0,70	3,18	0,66	1,01	0,073
1814	279	1,90	9,35	2,36	0,87	0,75	0,69	2,84	0,80	1,25	0.064
1815	269	1,92	8,58	2,55	0,83	0,76	0,59	3,17	0,91	1,31	0.072
1822	267	2,06	7,56	2,05	0,80	0,66	0,70	3,03	0,80	0,89	0.070
1823	268	2,06	9,57	1,93	0,86	0,62	0,60	3,06	0,74	0,89	0.069
1824	258	2,00	8,04	1,98	0,82	0,68	0,69	3,03	0,90	1,01	0.070
1093	281	1,95	9,24	2,10	0,88	0,49	0,61	3,05	0,90	1,26	0,083
1094	286	2,10	8,73	2,25	0,85	0,56	0,57	3,08	0,84	1,29	0,078
1098	294	2,00	9,11	2,10	0,95	0,50	0,54	2,96	0,73	1,39	0,079
1102	283	2,05	9,32	2,18	0,85	0,61	0,66	3,06	0,78	1,28	0,063
1107	308	2,02	9,49	2,25	0,96	0,66	0,73	3,22	0,74	1,23	0,064
596	290	2,06	8,57	2,51	0,89	0,52	0,66	3,54	1,07	1,25	0,069
599	306	2,21	9,40	2,16	0,93	0,80	0,53	3,22	0,99	1,20	0,078
601	316	2,06	9,92	2,17	0,98	0,62	0,65	3,33	0,97	1,15	0,076
604	314	2,14	8,98	2,33	0,90	0,63	0,71	3,15	0,96	1,25	0,076
605	289	2,10	8,58	2,09	0,87	0,59	0,62	3,45	0,92	0,86	0,076
Mean	279,9	2,03	8,69	2,15	0,87	0,66	0,64	3,13	0,84	1,14	0,071
SD	20,5	0,08	0,77	0,20	0,07	0,12	0,07	0,18	0,11	0,17	0,009
n	20	20	20	20	20	20	20	20	20	20	20
Min	249,0	1,90	7,09	1,69	0,70	0,49	0,49	2,84	0,66	0,86	0,050
Max	316,0	2,21	9,92	2,55	0,98	0,93	0,77	3,54	1,07	1,39	0,087

 \uparrow = Seminal vesicles with coagulating gland

Historical control - Collected data - 2018

Historical control

Organ weight Han:WIST Rat Male: 9 - 10 weeks old

Animal number	Brain	Liver	C Kidneys)rgan weig Heart	ght relative Thymus		reight (%) Testes	Epididy- mides	Seminal vesicles† Prostate	Adrenal glands
1760	0,74	3,09	0,78	0,31	0,29	0,29	1,17	0,28	0,45	0,025
1762	0,82	2,82	0,74	0,32	0,28	0,20	1,29	0,30	0,49	0,020
1771	0,82	3,13	0,68	0,28	0,20	0,22	1,15	0,28	0,40	0,021
1775	0,74	3,22	0,83	0,33	0,30	0,25	1,11	0,32	0,33	0,033
1780	0,75	2,98	0,84	0,36	0,36	0,27	1,23	0,25	0,39	0,028
1814	0,68	3,35	0,85	0,31	0,27	0,25	1,02	0,29	0,45	0,023
1815	0,71	3,19	0,95	0,31	0,28	0,22	1,18	0,34	0,49	0,027
1822	0,77	2,83	0,77	0,30	0,25	0,26	1,13	0,30	0,33	0,026
1823	0,77	3,57	0,72	0,32	0,23	0,22	1,14	0,28	0,33	0,026
1824	0,78	3,12	0,77	0,32	0,26	0,27	1,17	0,35	0,39	0,027
1093	0,69	3,29	0,75	0,31	0,17	0,22	1,09	0,32	0,45	0,030
1094	0,73	3,05	0,79	0,30	0,20	0,20	1,08	0,29	0,45	0,027
1098	0,68	3,10	0,71	0,32	0,17	0,18	1,01	0,25	0,47	0,027
1102	0,72	3,29	0,77	0,30	0,22	0,23	1,08	0,28	0,45	0,022
1107	0,66	3,08	0,73	0,31	0,21	0,24	1,05	0,24	0,40	0,021
596	0,71	2,96	0,87	0,31	0,18	0,23	1,22	0,37	0,43	0,024
599	0,72	3,07	0,71	0,30	0,26	0,17	1,05	0,32	0,39	0,025
601	0,65	3,14	0,69	0,31	0,20	0,21	1,05	0,31	0,36	0,024
604	0,68	2,86	0,74	0,29	0,20	0,23	1,00	0,31	0,40	0,024
605	0,73	2,97	0,72	0,30	0,20	0,21	1,19	0,32	0,30	0,026
Mean	0,73	3,11	0,77	0,31	0,24	0,23	1,12	0,30	0,41	0,025
SD	0,05	0,18	0,07	0,02	0,05	0,03	0,08	0,03	0,06	0,003
n	20	20	20	20	20	20	20	20	20	20
Min	0,65	2,82	0,68	0,28	0,17	0,17	1,00	0,24	0,30	0,020
Max	0,82	3,57	0,95	0,36	0,36	0,29	1,29	0,37	0,49	0,033

† = Seminal vesicles with coagulating gland

Historical control - Collected data - 2018

Historical control

Organ weight Han:WIST Rat Male: 9 - 10 weeks old

Animal number	Body weight	Liver	Organ we Kidneys		ody weight Thymus		o brain w Testes	eight (%) Epididy- mides	Seminal vesicles† Prostate	Adrenal glands	
1760	13452	415	105	41,1	38,6	39,1	157	37,56		3,4	
1762	12184	344	90	38,8	34,5	23,8	157	36,41	60,2	2,4	
1771	12206	382	83	34,3	24,5	27.0	140	34,31	48,5	2,6	
1775 1780	13452 13282	433 395	112 112	44,7 48,2	40,6 47,7	33,5 35,9	149 163	42,64 33,85		4,4 3,7	
1814	14684	492	124	45,8	39,5	36,3	149	42,11	65,8	3,4	
1815	14010	447	133	43,2	39,6	30,7	165	47,40		3,8	
1822	12961	367	100	38,8	32,0	34,0	147	38,83		3,4	
1823 1824	13010 12900	465 402	94 99	41.7 41.0	30,1 34,0	29,1 34,5	149 152	35,92 45,00		3,3 3,5	
1093	14410	474	108	45,1	25.1	31.3	156	46,15	64.6	4.3	
1094	13619	416	107	40,5	26,7	27,1	147	40,00		3,7	
1098	14700	456	105	47,5	25,0	27,0	148	36,50	69,5	4,0	
1102	13805	455	106	41,5	29,8	32,2	149	38,05		3,1	
1107	15248	470	111	47,5	32,7	36,1	159	36,63	60,9	3,2	
596	14078	416	122	43,2	25,2	32,0	172	51,94		3,3	
599	13846	425	98	42,1	36,2	24,0	146	44,80		3,5	
601	15340	482	105	47,6	30,1	31,6	162	47,09		3,7	
604 605	14673 13762	420 409	109 100	42,1 41,4	29,4 28,1	33,2 29,5	147 164	44,86 43,81	58,4 41,0	3,6 3,6	
Mean	13781	428	106	42.8	32.5	31.4	154	41.2	56.3	3.5	
SD	893	39	12	3,5	6,3	4.2	8	5,1	8,8	0.5	
n	20	20	20	20	20	20	20	20	20	20	
Min Max	12184 15340	344 492	83 133	34,3 48,2	24,5 47,7	23,8 39,1	140,2 171,8	33,8 51,9	41.0 69.5	2,4 4,4	

† = Seminal vesicles with coagulating gland

Historical control - Collected data - 2018

Historical control

			Han	WIST Rat	Female: 9 -	10 weeks o	ld			
Animal	Body				Or	zan weight ((a)			
number	weight	Brain	Liver	Kidneys	Heart	Thymus	Spleen	Uterus	Ovaries	Adrenal glands
1794	164	1,91	5,30	1,31	0,57	0,52	0,33	0,50	-	0,055
1796	172	1,90	5,87	1,42	0,58	0,49	0,44	0,42	-	0,073
1797	166	1,87	5,03	1,38	0,62	0,40	0,50	0,44	-	0,080
1801	163	1,82	5,26	1,20	0,57	0,50	0,32	0,37	-	0,068
1802	170	1,92	6,33	1,41	0,62	0,44	0,44	0,48	-	0,064
1836	160	1,90	4,74	1,35	0,54	0,41	0,33	-	-	0,079
1841	167	1,77	5,21	1,49	0,58	0,49	0,54	-	-	0,065
1843	169	1,98	5,78	1,38	0,54	0,49	0,45	-	-	0,079
1845	172	1,79	5,35	1,51	0,60	0,59	0,40	-	-	0,079
1858	171	1,85	5,30	1,33	0,56	0,35	0,40	-	-	0,057
1120	189	1,84	5,35	1,33	0,58	0,42	0,44	-		0,079
1128	195	1.84	6,09	1.48	0.54	0.40	0.49	-	-	0.099
1130	186	1.84	5,33	1.22	0,56	0.28	0.42	-	-	0,077
1131	179	1,92	5,32	1,34	0,57	0,29	0,35	-	-	0,074
1136	181	1,80	5,23	1,24	0,57	0,36	0,44	-	-	0,070
612	181	1.90	5,49	1.44	0.65	0.52	0.43	0.56	0.089	0,068
617	185	1.80	5,68	1,53	0.64	0,54	0.35	0,36	0.108	0.066
621	193	1.93	5,67	1,46	0,55	0,38	0,46	0,48	0.083	0.074
622	183	1,91	6,56	1,56	0,61	0,39	0,38	0,35	0,081	0.069
629	192	1,75	6,61	1,61	0,66	0,50	0,38	0,37	0,113	0,082
Mean	176.9	1.86	5,58	1.40	0.59	0.44	0.41	0.43	0.095	0.073
SD	10.9	0.06	0.50	0.11	0.04	0,08	0.06	0.07	0.015	0.010
n	20	20	20	20	20	20	20	10	5	20
Min	160	1.75	4.74	1.20	0.54	0.28	0.32	0.35	0.081	0.055
Max	195	1.98	6.61	1.61	0.66	0.59	0.54	0.56	0.113	0,099
			-1	-1		-1	-1			- 1

Organ weight Han:WIST Rat Female: 9 - 10 weeks old

Remark: '- = No data

Historical control - Collected data - 2018

Historical control

Organ weight Han:WIST Rat Female: 9 - 10 weeks old

Animal					lative to bo				
number	Brain	Liver	Kidneys	Heart	Thymus	Spleen	Uterus	Ovaries	Adrenal glands
1794	1,16	3,23	0,80	0,35	0,32	0,20	0,30	-	0,0335
1796	1.10	3,41	0,83	0,34	0,28	0,26	0,24	-	0,0424
1797	1,13	3,03	0,83	0,37	0,24	0,30	0,27	-	0,0482
1801	1,12	3,23	0,74	0,35	0,31	0,20	0,23	-	0,041
1802	1,13	3,72	0,83	0,36	0,26	0,26	0,28	-	0,037
1836	1,19	2,96	0,84	0,34	0,26	0,21	-	-	0,0494
1841	1,06	3,12	0,89	0,35	0,29	0,32	-	-	0,038
1843	1.17	3,42	0,82	0,32	0,29	0,27	-	-	0,046
1845	1,04	3,11	0,88	0,35	0,34	0,23	-	-	0,045
1858	1,08	3,10	0,78	0,33	0,20	0,23	-	-	0,033
1120	0,97	2,83	0,70	0,31	0,22	0,23	-	-	0,041
1128	0,94	3,12	0,76	0,28	0,21	0,25	-	-	0,050
1130	0,99	2,87	0,66	0,30	0,15	0,23	-	-	0,041
1131	1,07	2,97	0,75	0,32	0,16	0,20	-	-	0,041
1136	0,99	2,89	0,69	0,31	0,20	0,24	-	-	0,038
612	1.05	3.03	0,80	0.36	0.29	0.24	0.31	0.049	0.037
617	0.97	3,07	0,83	0.35	0.29	0.19	0.19	0.058	0.035
621	1,00	2,94	0,76	0,28	0,20	0,24	0,25	0,043	0,038
622	1,04	3,58	0,85	0,33	0,21	0,21	0,19	0,044	0,037
629	0,91	3,44	0,84	0,34	0,26	0,20	0,19	0,059	0,042
Mean	1.06	3.15	0.79	0.33	0.25	0.23	0.25	0.051	0.
SD	0.08	0.25	0.06	0.03	0.05	0.04	0.04	0.008	0.
n	20	20	20	20	20	20	10	5	2
Min	0.91	2.83	0.66	0.28	0.15	0.19	0.19	0.043	
Max	1.19	3,72	0.89	0.37	0.34	0.32	0.31	0.059	

Remark: '- = No data

Historical control - Collected data - 2018

Historical control

Organ weight Han:WIST Rat Female: 9 - 10 weeks old

number	Body wight	Liver	rgan weight <mark>Kidne</mark> ys	Heart	Thymus	Spleen	Uterus	Ovaries	Adrena glands
1794	8586	277	68,6	29,8	27,2	17,3	26,2	824	2,8
1796	9053	309	74,7	30,5	25,8	23,2	22,1	823	3.8
1797	8877	269	73.8	33.2	21.4	26.7	23,5	227	4.
1801	8956	289	65,9	31,3	27,5	17,6	20,3	124	3,1
1802	8854	330	73,4	32,3	22,9	22,9	25,0	223	3,3
1836	8421	249	71,1	28,4	21,6	17,4	2	121	4,3
1841	9435	294	84,2	32,8	27,7	30,5	1	222	3.0
1843	8535	292	69,7	27,3	24,7	22,7	-	-	3,9
1845	9609	299	84,4	33,5	33,0	22,3	-	3 - 3	4,4
1858	9243	286	71,9	30,3	18,9	21,6	-	14	3,0
1120	10272	291	72,3	31,5	22,8	23,9	-	-	4,2
1128	10598	331	80,4	29,3	21,7	26,6	-		5,3
1130	10109	290	66,3	30,4	15,2	22,8	-	-	4,1
1131	9323	277	69,8	29,7	15,1	18,2	-		3,5
1136	10056	291	68,9	31,7	20,0	24,4	-	80 - 51	3,8
612	9526	289	75,8	34,2	27,4	22,6	29,5	4,68	3,5
617	10278	316	85,0	35,6	30,0	19,4	20,0	6,00	3,0
621	10000	294	75,6	28,5	19,7	23,8	24,9	4,30	3,5
622	9581	343	81,7	31,9	20,4	19,9	18,3	4,24	3,0
629	10971	378	92,0	37,7	28,6	21,7	21,1	6,46	4,0
Mean	9514	300	75,3	31,5	23,6	22,3	23,1	5,1	3
SD	720	29	7,1	2,5	4,8	3,4	3,4	1,0	0
n	20	20	20	20	20	20	10	5	1
Min	8421	249	65,9	27,3	15,1	17,3	18,3	4,24	2,8
Max	10971	378	92,0	37,7	33.0	30.5	29,5	6,46	5.3

Remark: '- = No data

Historical control - Collected data - 2018

Study no. 842-400-5742			
Toxi-coop zrt.		TOXI-COOP ZRT Address: Berlini utca 47-49. H-1045 Budapest Hungary Phone: +36-1-920-1228	
-	-	l Gavage Toxicity Study (Dil - C60/C70, C60, C70 -	
	Study no.: Study Director: Date of Study Plan: (Study Plan including App	842-400-5742 Ilona Pasics Szakonyiné January 29, 2021 endices total pages 29)	
Sponsor: SES RESEARCH 5999 West 34th Str Suite 106 Houston,TX 77079	eet	Test Facility Toxi-Coop Zrt. Berlini utca 47-49. H-1045 Budapest Hungary	
		Fullerenes in Olive Oil	

Table	e of Contents P:	age
Study	plan signatures	4
-	al statements	
Exper	imental schedule	6
Respo	nsibilities	7
1.0	Study objective and introduction	8
2.0	Regulatory guidelines and test methods	8
3.0	Quality assurance	8
3.1	GLP compliance	
3.2	Amendment procedures	
3.3 3.4	Deviation procedures / interfering factors Quality assurance evaluations	
3.5	Archiving	
4.0	Materials and methods	
4.1	Test items	
	1.1 Characteristics of test items	
	1.1.2 Identification, receipt	
	 Formulation Concentration check of the test item 	
4.2	Control item.	
4.3	Characteristics of the other materials	
4.4	Test system	
	4.1 Animals	
	4.2 Reason for selection of species4.3 Husbandry	
	1.4.4 Identification of animals	
4.5	Experimental design	
	4.5.1 Route of administration and reason for the selection	
	1.5.2 Randomization	
	4.5.4 Justification of dose level selection	
4.6	Duration of the experimental period.	
5.0	Description of the test procedure	
5.1	Selection of animals	
5.2	Administration of test item	
5.3 5.4	Mortality Clinical observations	
5.4 5.5	Body weight and body weight gain	
5.6	Food consumption measurement	
5.7	Clinical pathology	16
	7.1 Hematology	17
	5.7.2 Blood coagulation	
	5.7.3 Clinical chemistry	18

	ology	
	Necropsy	
	Organ weight Histopathology	
	ition of experimental data	
	l welfare	
-	ting	
	oution of the study plan	
	nces	
11.0 Abbrev	viations	24
Appendices:		
APPENDIX 1		
	• ertificates of Analysis	4 pages
1.2	·	10
APPENDIX 2		
Contents of SS	SNIFF [®] SM R/M-Z+H Complete diet for rats and mice	1 page
The following	print of the study plan is issued:	
	print of the study plan is issued: Original is archived at Toxi-Coop Zrt.	
The following print:		
Paper print:		

Study plan	n signatures
On behalf of Toxi-Coop Zrt.	
Edesyne Taxis Ilica Ilona Pasits Szakonyiné Study Director Dr. Gábor Nirka Managing Director Firm Mitt Anett Szegner Quality Assurance	Date Date 29, 2021 Date 29, 2021 Date 29, 2021 Date 29, 2021
Eva Toth Secretary of IACUC	January 29,2021 Date
John R Endres, ND	February 1, 2021 Date

	General statements
Study title:	14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60, C70 - in Rats
Study number:	842-400-5742
Sponsor:	SES RESEARCH Inc. 5999 West 34th Street Suite 106 Houston,TX 77079 USA
Sponsor's scientific monitor:	John R. Endres, ND Chief Scientific Officer Natural and Medicinal Products Research AIBMR Life Sciences, Inc. 2800 E. Madison St. Suite 202 Seattle WA 98112
Test facility:	Toxi-Coop Zrt. Berlini utca 47-49. H-1045 Budapest Hungary Arácsi út 97. H-8230 Balatonfüred, Hungary

Experimental schedule		
Proposed date of start of experimental phase Proposed date of end of in-life phase: Proposed date of end of experimental phase:	February 23, 2021	
Pre-experimental period		
Animal arrival: Veterinary control/acclimatization: Animal identification: Body weight measurement: Clinical observations: Randomization:	February 04, 2021 February 04 – 22, 2021 February 04, 2021 February 05, 22, 2021 February 05, 22, 2021 February 08, 2021	
Experimental period		
Treatment period:	February 09 - 22, 2021	
Body weight measurement:	February 09, 12, 16, 19, 22, 2021 Before the necropsy: February 23, 2021	
Food consumption measurement:	February 09, 16, 22, 2021	
Clinical observation:	February 09 - 22, 2021, daily	
Blood sampling:	February 23, 2021	
Necropsy:	February 23, 2021	
Proposed date of Draft Report: Proposed date of Final Report:	April 12, 2021 Within four weeks after the Sponsor's approval of Draft Report	

	Responsibilities
Test facility management:	Dr. Gábor Hirka Phone: +36-1-920-1228 E-mail: <u>gabor.hirka@toxicoop.com</u>
Study director:	Ilona Pasics Szakonyiné Phone: +36-30-846-2665 E-mail: <u>ilona.pasics@toxicoop.com</u>
Head of Quality assurance unit:	Ildikó Hermann Phone: +36-1-920-1228 E-mail: <u>ildiko.hermann@toxicoop.com</u>
Sponsor's scientific monitor:	John R. Endres, ND Phone: (253) 286-2888 john@aibmr.com http://www.aibmr.com
Histopathology:	Róbert Glávits, D.V.M., Ph.D., D.Sc. Histopathologist
Responsible personnel:	The names and the responsibilities of other scientists or professionals, and of responsible technical and quality assurance personnel, involved in the study will be part of the raw data and the study report.

Copy of the Study Plan

Study no. 842-400-5742 1.0 Study objective and introduction The objective of this study is to obtain first information on the toxic potential of three fullerenes - C60/C70, C60 and C70 - i.e. test items Olive Oil infuse with Carbon C60/C70, Olive Oil infuse with Carbon C60 and Olive Oil infuse with Carbon C70 in the groups of male and female rats likely to arise from repeated exposure to the test item over a 14-Day repeatdose test period. 2.0 **Regulatory guidelines and test methods** This study will follow the procedures indicated by the following internationally accepted guidelines and recommendations: OECD Guidelines for Testing of Chemicals, Section 4 Health Effects; No. 407, "Repeated Dose 28-Day Oral Toxicity Study in Rodents" (adopted 03 October 2008) US FDA Toxicological Principles for the Safety Assessment of Food Ingredients. Redbook 2000, IV.C. 3.a. Short-Term Toxicity Studies with Rodents (2003). Three groups of three test item will be examined (instead of three doses of one substance as determined by the test guidelines) at approximately similar concentrations and doses. 3.0 Quality assurance 3.1 **GLP** compliance On the request of the Sponsor for authority purposes, the study will be performed in compliance with the principles of Good Laboratory Practice Regulations. The Principles of Good Laboratory Practice as specified by Hungarian and international legislations are followed: Hungarian Good Laboratory Practice Regulation: 42/2014 (VIII. 19.) EMMI decree of the Minister of Human Capacities which corresponds to the OECD GLP, ENV/MC/CHEM(98)17) OECD Principles of GLP as revised in 1997, published in ENV/MC/CHEM (98)17); OECD, Paris, 1998 Unless otherwise specified, all procedures mentioned in the study plan are the subject of detailed standard operating procedures (SOPs), which are contained in the SOP manuals of the operating departments of Toxi-Coop Zrt. The Quality Assurance will conduct inspections of the study plan, various phases of the study, certain repetitive operations and the report will be audited according to internal Standard Operating Procedures. 14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60 and C70 - in Rats page 8 of 24

Copy of the Study Plan

Study no. 842-400-5742

3.2 Amendment procedures

This study plan can be amended in consultation with the sponsor (intended changes). Amendments will become effective at the time of the study director's signature. After authorization, the sponsor will return the signed amendment and it will be stored with the original of the study plan. Copies of the amendment will be distributed and added to all copies of the study plan.

3.3 Deviation procedures / interfering factors

The Test Facility undertakes to adopt all reasonable measures to perform the study in accordance with the study plan. Under practical working conditions, however, some minor variations may occur due to circumstances beyond the control of the Test Facility. All such deviations will be documented in the study records with the raw data and reported in the study report the reason for the study plan deviation and its anticipated effect on the outcome of the study. The deviations will be approved by the study director and communicated to the Sponsor.

3.4 Quality assurance evaluations

The study is subjected to quality assurance evaluation. The performance of techniques, as described in the SOPs, is regularly inspected by the quality assurance (QA) of Toxi-Coop Zrt. Study plan, raw data of the study, all relevant phases of the study and the draft and final report are also inspected according to the QA's SOPs. A QA statement, signed by the QA, is included in the final report.

3.5 Archiving

The study documents and samples as listed below will be archived according to the OECD GLP regulations and to the Toxi-Coop Zrt.'s SOP-s in the archives of Toxi-Coop Zrt. Berlini utca 47-49. H-1045 Budapest Hungary:

- all raw data¹ for 15 years,
- the Study plan for 15 years,
- any Study plan Amendment(s) for 15 years,
- one original Final Report for 15 years,
- one sample of the control and test items for 5 years,
- biological samples for 5 or 12 years:
 - -- organs and tissues preserved in 4 % buffered formaldehyde solution for 5 years
 - -- blocks and slides of organs and tissues 12 years
- correspondence for 15 years,

14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60 and C70 - in Rats

page 9 of 24

¹

A. Information on test item will include but not be limited to the following: Storage; Certificate of analysis of test item; Usage; Disposition;

B. Information on animals should include but not be limited to the following: Receipt, age of animals at starting; Initial health assessment; Dosing; Body weights; Food consumption; Clinical observations; Ophthalmologic evaluations, Hematology, clinical chemistry and coagulation data; Individual necropsy records; Organ weights; Histopathology data;

C. All other records that would demonstrate adherence to the study plan.

Copy of the Study Plan

Study no. 842-400-5742

For the first 5 years archiving is included, thereafter archiving occurs at additional costs of the Sponsor. After this period, the Sponsor will be notified to decide on further archiving to comply with current legal requirements.

After the retention time all the archived materials listed above will be returned to the Sponsor or retained for a further period if agreed by a contract or destroyed on their behalf. None of the above cited documents or material will be discarded without the explicit written consent of the Sponsor.

At the end of the study, any remaining test item will be returned to the Sponsor or will be discarded, unless otherwise instructed by the Sponsor.

14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60 and C70 - in Rats

page 10 of 24

4.0Materials and methods4.1Test items4.1.1Characteristics of test itemsName of test item 1:Olive Oil infuse with Carbon C60/C70, Product Code:Lot#:V0001 Fullerene (C60/C70) content:Bigs850 mg/kg Relative density:Appearance:Brown-reddish liquid Odor:Odor:Faint oil odor Manufacturing date:April 17, 2020 Expiry date:April 17, 2023 Storage conditions:Name of test item 2:Olive Oil infuse with Carbon C60 Product Code:Name of test item 2:Olive Oil infuse with Carbon C60 Product Code:Name of test item 2:Olive Oil infuse with Carbon C60 Product Code:Product Code:SE20-142 Lot#:Lot#:V01561	
4.1.1Characteristics of test itemsName of test item 1:Olive Oil infuse with Carbon C60/C70, Product Code:Product Code:SE20-6070Lot#:V0001Fullerene (C60/C70) content:850 mg/kgRelative density:0.91 g/mLAppearance:Brown-reddish liquidOdor:Faint oil odorManufacturing date:April 17, 2020Expiry date:April 17, 2023Storage conditions:At room temperatureName of test item 2:Olive Oil infuse with Carbon C60Product Code:SE20-142	
Name of test item 1:Olive Oil infuse with Carbon C60/C70,Product Code:SE20-6070Lot#:V0001Fullerene (C60/C70) content:850 mg/kgRelative density:0.91 g/mLAppearance:Brown-reddish liquidOdor:Faint oil odorManufacturing date:April 17, 2020Expiry date:April 17, 2023Storage conditions:At room temperatureName of test item 2:Olive Oil infuse with Carbon C60Product Code:SE20-142	
Product Code:SE20-6070Lot#:V0001Fullerene (C60/C70) content:850 mg/kgRelative density:0.91 g/mLAppearance:Brown-reddish liquidOdor:Faint oil odorManufacturing date:April 17, 2020Expiry date:April 17, 2023Storage conditions:At room temperatureName of test item 2:Olive Oil infuse with Carbon C60Product Code:SE20-142	
Name of test item 2:Olive Oil infuse with Carbon C60Product Code:SE20-142	
Fullerene (C60) content:830 mg/kgRelative density:0.91 g/mLAppearance:Reddish-brown- liquidOdor:Faint oil odorManufacturing date:April 17, 2020Expiry date:April 17, 2023Storage conditions:At room temperature	
Name of test item 3:Olive Oil infuse with Carbon C70Product Code:SE20-0070Lot#:V0011Fullerene (C70) content:830 mg/kgRelative density:0.91 g/mLAppearance:Dark red liquidOdor:Faint oil odorManufacturing date:April 17, 2020Expiry date:At room temperature(Information based on the Certificate of Analysis, Material Safety Data Sheet and correspondence with S Scientific Monitor.)	ponsor's
4.1.2 Identification, receipt	
The test items of a suitable chemical purity, certificate of analysis, safety data sh specification of the product were supplied by the Sponsor. All precautions required handling and disposal of the test items were outlined by the Sponsor. Identification items was made in Toxi-Coop Zrt. on the basis of the information included in the Cert of Analysis (see appendix 1) and MSDS.	l in the of test

Copy of the Study Plan

Study no. 842-400-5742

4.1.3 Formulation

Formulation of the test items is not necessary. The three fullerenes (Olive Oil infuse with Carbon C60/C70, Olive Oil infuse with Carbon C60 and Olive Oil infuse with Carbon C70) as well as the control item (EVO Olive Oil) were provided by the Sponsor in "ready to use" form.

4.1.4 Concentration check of the test item

Analytical control of dosing formulations (control of concentration) will be not performed within the scope of this study. The sponsor provided the analytical certificates for control and test items prepared in "ready to use" form.

4.2 **Control item**

Name:	EVO Olive Oil
Product Code:	SE20-EVOO
Lot#:	V100
Appearance:	Golden-greenish liquid
Odor:	Faint oil odor
Manufacturing date:	April 17, 2020
Expiry date:	April 17, 2023
Storage conditions:	At room temperature

4.3 Characteristics of the other materials

Name:	Isofluran CP®
Batch number:	G150G19A
Expiry date:	June 2024
Supplier:	Medicus Partner Kft.
	Biatorbágy, Tormásrét u. 12.
	H-2051 Hungary
Storage conditions:	Below30 °C
Purpose of use:	Anesthesia during the blood collection and euthanasia
Specification of new ba needed.	tches of anesthetics will be given in the Study report and raw data if

4.4 Test system

4.4.1 Animals

Species / Strain: Source:	Han:WIST rat of Wistar origin Toxi-Coop Zrt. 1103 Budapest, Cserkesz u. 90.
Hygienic level:	SPF (Specific pathogen-free) at arrival and kept in good conventional environment during the study.
Age at the commencement	
of the treatment:	Young adult rats, less than 9 weeks old
Body weights at arrival:	The weight variation will not exceed \pm 20 per cent of the mean weight
	ticity Study of three Fullerenes in Olive Oil
- C60/C70, C60 and C70 - in Rats	page 12 of 24

Study n	o. 842-400-5742	
	Number and sex of animals:	: 40 rats (20 male and 20 female - nulliparous and non-pregnant
	Number of groups: Number of animals/groups	
	Animal health:	Only healthy animals will be used for the study. Healthy status will be certified by the breeder.
4.4.2	Reason for selection of sp	pecies
	recommendations. The W	species for toxicological studies in accordance with international istar rat is the system of choice because it has been the preferred species for toxicity tests is a well-known laboratory model with
4.4.3	Husbandry	
4.4.3.1	Housing conditions	
	Animal room no.:	18/1 and 18/2
	Housing:	Individual caging
	Cage type:	Type III polypropylene/polycarbonate (conform to the size recommendations in the latest <i>Guide for the Care and Use of Laboratory Animals</i> (Natl. Res. Council, 2011) ² .
	Bedding:	Certified laboratory wood bedding (SAFE 3/ 4-S-FASERN produced by J. Rettenmaier & Söhne GmbH+Co.KG; D-73494 Rosenberg Holzmühle 1 Germany). The cages and bedding will be changed once or twice a week.
	Illumination:	Artificial light, from 6 a.m. to 6 p.m. (except days of ophthalmology examinations)
	Temperature: Relative humidity:	22 ± 3 °C 30 - 70 %
	Ventilation:	Above 10 air-exchanges/ hour by a central air-condition system.
	Acclimatization time:	5 days
		are maintained by an air-condition system. Temperature and erified and recorded daily during the study.
4.4.3.2	Prood and water supply	
	Spezialdiäten GmbH, D-59	^{(®} SM R/M-Z+H complete diet for rats and mice produced by ssniff 9494 Soest Germany and tap water, as for human consumption, <i>ad</i> bood deprivation before blood sampling.
	affect the purpose or integ	t to contain any contaminants that could reasonably be expected to rity of the study. The supplier will provide an analytical certificate batch used. Contents of standard diet for rats and mice guaranteed ed in Appendix 2.
² Nation Sci., N	nal Research Council Guide for th Iatl. Acad. Press, 8 th Edition, Was	ne Care and Use of Laboratory Animals, Inst. Lab. Anim. Res., Comm. Life shington, D.C., 2011.
	Repeated Dose Oral Gavage Tox 70, C60 and C70 - in Rats	xicity Study of three Fullerenes in Olive Oil page 13 of 24

Copy of the Study Plan

Study no. 842-400-5742

Animals will receive tap water from watering bottles. Water quality control analysis and microbiological assessment are performed once in every six months by Government Office of Capital Budapest Department of Public Health and Medical Officer Service (Váci út 172-174. Budapest, H-1138 Hungary). The quality control results are available at Toxi-Coop Zrt.'s archives.

4.4.4 Identification of animals

Individual identification will be performed by numbers on the tail of the animals written with a permanent marker. The numbers will be given on the basis of the laboratory master file of Toxi-Coop Zrt. and will be re-marked as necessary to ensure correct identification. The cages will be marked by identity cards, with information at least about the study number, control or test item name, group number, sex, cage number and individual animal numbers, mode of administration, start of the treatment, date of the necropsy. Cages will be arranged in such a way that possible effects due to cage placement are minimized.

4.5 Experimental design

4.5.1 Route of administration and reason for the selection

The test item will be administered orally via gavage. The route of application is selected in compliance with international guidelines (See references in section 2). The oral route is the anticipated route of human exposure to the test item.

4.5.2 Randomization

Animals will be randomly assigned to test groups. All animals will be sorted according to body weight by computer and grouped according to weight ranges.

There will be an equal number of animals from each weight group in each of the experimental groups during the randomization.

The grouping will be controlled by SPSS/PC+ computer program according to the actual body weight verifying the homogeneity and deviations among the groups.

4.5.3 Dose levels

A control and three test items treated groups will be involved in the study. Table below contains the group number, name of control and test items, doses, dosing volume and number of animals.

Table 1: Experimental design

Group	Name and	Dose††	Dose volume	Number o	of animals
num ber	concentration † of control or test items	(mg/kg bw/day)	(mL/kg bw)	Male	Female
Group 1	EVO Olive Oil 0 mg/mL	0	5	5	5

14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60 and C70 - in Rats

page 14 of 24

Copy of the Study Plan

Study no. 842-400-5742

Table 1: Experimental design

Group	Name and	Dose††	Dose volume	Number o	of animals
num ber	concentration † of control or test items	(mg/kg bw/day)	(mL/kg bw)	Male	Female
Group 2	Olive Oil Infuse with Carbon C60/C70 0.77 mg/ml	4 (3.85)	5	5	5
Group 3	Olive Oil Infuse with Carbon C60 0.76 mg/ml	4 (3.8)	5	5	5
Group 4	Olive Oil Infuse with Carbon C70 0.76 mg/ml	4 (3.8)	5	5	5

† Concentrations by C60/70, C60 or C70;

++Doses calculated by C60/70, C60 or C70 concentrations, respectively.

Animals in Group 1 will only receive the control item, EVO Olive Oil.

4.5.4 Justification of dose level selection

The Sponsor, in consultation with the Study Director, selected the dose levels to target approximate exposures of 0 and 4 mg/kg bw/day of control and test items C60/70, C60 or C70, respectively.

4.6 Duration of the experimental period

The experimental period involves 5 days of acclimatization, 14 days treatment and observation periods and necropsy on the following day (Day 14). The day of first treatment is considered as Day 0 of examination.

5.0 **Description of the test procedure**

5.1 Selection of animals

Forty (40) healthy rats (twenty males and twenty females) will be used on test. Animals will be selected for this study on the basis of adequate body weight, freedom from clinical signs of disease or injury, and a body weight within \pm 20% of the mean within a sex. Selected rats will be distributed by randomization according to stratification by body weight

so that there will be no statistically significant difference among group body weight means within a sex.

5.2 Administration of test item

The control and test items are to be administered to the appropriate animals by once daily oral gavage approximately the same time each day morning within a 2-3 hours period from Day 0 up to Day 13 and Day 14. The dose volume for each animal will be based on the most recent body weight measurement.

Animals will not be treated on the day of necropsy.

14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60 and C70 - in Rats

page 15 of 24

Copy of the Study Plan

Study no. 842-400-5742

5.3 Mortality

Inspection for signs of morbidity and mortality will be made twice daily at the beginning and at the end of the working day. Moribund animals or animals obviously in pain or showing signs of severe and enduring distress will be euthanized. These animals will be processed in the same way as the animals of the terminal necropsy. Mortality checks will be recorded.

5.4 Clinical observations

General clinical observations will be made cage-side once a day, after treatment at approximately the same time.

On the day prior to the first treatment with the test item, and approximately once weekly thereafter, a detailed observation will be conducted while handling the animal on days that the animals are weighed and food consumption measurements are taken. Potential signs noted include but are not limited to: changes in skin, fur, eyes, and mucous membranes, occurrence of secretions and excretions and autonomic activity (e.g., lacrimation, piloerection, pupil size, and unusual respiratory pattern).

Likewise, changes in gait, posture and response to handling as well as the presence of clonic or tonic movements, stereotype activities (e.g., excessive grooming, repetitive circling), or bizarre behavior (e.g., self-mutilation, walking backwards) will be recorded. All observations will be recorded.

The Study Director will be advised when an animal is found in a moribund condition and may authorize euthanasia and necropsy as necessary to avoid the loss of quality data. All such authorizations will be recorded in the raw data.

5.5 Body weight and body weight gain

Individual body weights will be recorded two times during acclimatization. Animals involved in the study will be weighed with an accuracy of 1 g on Day 0 (prior to study start) and twice weekly thereafter (i.e. on Days 0, 3, 7, 10 and 13).

The animals will also be weighed prior to sacrifice (on Day 14) in order to calculate organ to body weight ratios. Decedents will be also weighed. Individual body weight changes will be calculated according to the days of measurements and for the study overall.

5.6 Food consumption measurement

Food consumption will be determined with the measurement of given and non-consumed diet with a precision of 1 g once weekly to coincide with body weight measurements (Days 0, 7 and 13). Food consumption will be evaluated and reported by weekly interval for each group. Feed efficiency will be calculated and reported. Feed efficiency will be calculated on the basis of the weekly body weight gain and food consumption.

5.7 Clinical pathology

Clinical pathology examinations including hematology, blood coagulation and clinical chemistry will be conducted at termination of the treatment (i.e. one day after the last treatment: on Day 14).

14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60 and C70 - in Rats

page 16 of 24

Copy of the Study Plan

Study no. 842-400-5742 Animals will be food deprived overnight (for approximately 16 hours) prior to blood collection. Blood samples will be harvested from the retro orbital venous plexus under Isofluran CP® anesthesia. Three samples will be taken from each animal: one for hematology, one for determination of blood clotting times and the third one to obtain serum samples for clinical chemistry. 5.7.1 Hematology Blood samples for hematology measurements will be collected in tubes containing K3EDTA (spray-dried; MiniCollect® 0.5 mL, manufactured by Greiner Bio-One International AG, Kremsmünster, Austria; or equivalent) and tubes should be filled up to the final volume marked on the tubes. Blood will be analyzed immediately after sampling (may be stored at 2-8 °C until analysis not longer than for 24 hours). The parameters listed in Table 3 will be measured in all animals by Siemens ADVIA120: Table 2: Hematology parameters METHODS PARAMETERS UNIT WBC $10^{9}/L$ (G/L) Flow cytometry method White Blood Cell (leukocyte) count RBC 10¹²/L (T/L) Flow cytometry method Red Blood Cell (erythrocyte) count HGB Cyanide-colorimetric g/L Hemoglobin concentration hemoglobin method HCT L/LComputed by equipment Hematocrit (relative volume of erythrocytes) MCV fL Flow cytometry method Mean Corpuscular (erythrocyte) Volume MCH Computed by equipment pg Mean Corpuscular (erythrocyte) Hemoglobin MCHC g/L Mean Corpuscular (erythrocyte) Hemoglobin Computed by equipment Concentration PLT $10^{9}/L$ (G/L) Flow cytometry method Platelet (thrombocyte) count RET % Flow cytometry method Reticulocytes, Peroxidase and basophil/ Differential white blood cell count* % lobularity method † Notes: NEU: Neutrophil (%) LYM: Lymphocyte (%) EOS: Eosinophil; (%) MONO: Monocyte (%) BASO: Basophil (%) 5.7.2 Blood coagulation Blood samples for determination of blood clotting times (APTT and PT) will be collected in tubes containing 9NC Coagulation sodium citrate 3.2 % (MiniCollect® 1 mL; manufactured by Greiner Bio-One International AG, Kremsmünster, Austria; or equivalent). Tubes should be filled up to the final volume marked on the tubes.

14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60 and C70 - in Rats

page 17 of 24

Copy of the Study Plan

Study no. 842-400-5742

Blood will be centrifuged at 2500 rpm for 15 minutes within 20 - 30 minutes after the sampling. Supernatant plasma samples will be measured immediately after harvesting (may be stored at 2-8 °C and measured within 3 hours or should be frozen between (-20 °C) and (-80 °C) then should be measured within 30 days). The following parameters will be measured in all animals by Sysmex CA-1500:

Table 3: Blood coagulation parameters

PARAMETERS	UNIT	METHODS
APTT Activated partial Thromboplastin Time	sec	Optical
PT Prothrombin Time	sec	Optical

5.7.3 Clinical chemistry

Blood samples collected for clinical chemistry measurements will be drawn in tubes Vacuette 2.5 mL Z Serum Sep C/A (no anticoagulant; manufactured by Greiner Bio-One International AG, Kremsmünster, Austria; or equivalent).

At least 1.0 mL blood should be collected if possible, into clinical chemistry tubes. Samples will be stored in a dark place at room temperature for 30-40 minutes and then centrifuged at 4000 rpm for 15 minutes. Serum samples will be stored at 2-8 °C (or frozen between minus 20 and minus 30 °C) and measured within 7 days.

The following parameters will be measured in all animals by Cobas C311:

 Table 4: Clinical chemistry parameters

PARAMETERS	UNIT	METHODS
ALT Alanine Aminotransferase activity	U/L	IFCC recommended (with P-5'-P), 3-reagent system
AST Aspartate Aminotransferase activity	U/L	IFCC recommended (with P-5'-P), 3-reagent system
GGT Gamma Glutamyltransferase activity	U/L	IFCC recommended enzymatic method
ALP Alkaline Phosphatase activity	U/L	IFCC (AMP) 2-Amino-2-metyl-1- propanol
TBIL Total Bilirubin concentration	µmol/L	Colorimetric diazo method (NBD: <i>p-</i> <i>nitrobenzene-diazonium</i>)
CREA Creatinine concentration	µm ol/L	Enzymatic method
UREA Urea concentration	mmol/L	Urease-GLDH method
GLUC Glucose concentration	mmol/L	Hexokinase method
CHOL Cholesterol concentration	mmol/L	Enzymatic CHOD-POD method

14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60 and C70 - in Rats

page 18 of 24

Copy of the Study Plan

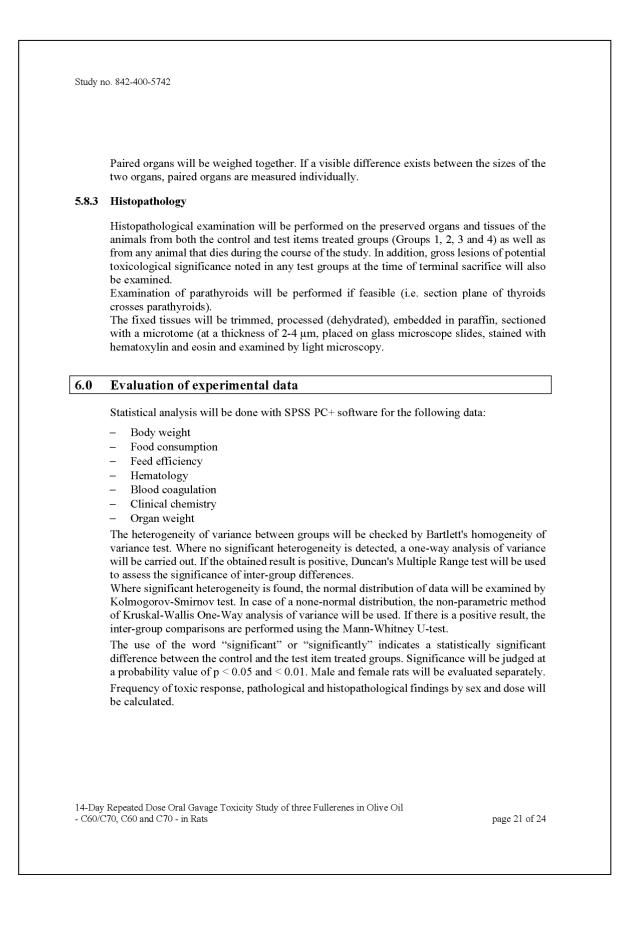
Table 4: Clinical chemistry parameters		
PARAMETERS	UNIT	METHODS
Pi Inorganic phosphate concentration	mmol/L	Ammonium-molybda
Ca ⁺⁺ Calcium concentration	mmol/L	(NM-BAPTA)-EDTA method
Na ⁺ Sodium concentration	mmol/L	Potentiometric test (Direct ISE)
K ⁺ Potassium concentration	mmol/L	Potentiometric test (Direct ISE)
Cl ⁻ Chloride concentration	mmol/L	Potentiometric test (Direct ISE)
ALB Albumin concentration	g/L	Colorimetric - BCG (Bromocresol green) metod
TPROT Total Protein concentration	g/L	Colorimetric – Biuret method
A/G Albumin/globulin ratio	-	Calculated value

5.8.1 Necropsy

Gross pathology will be performed on every experimental animal irrespective of the date of its death: animals died during the study or are removed from the study for animal welfare reasons and at termination of the treatment.

Scheduled sacrifice:

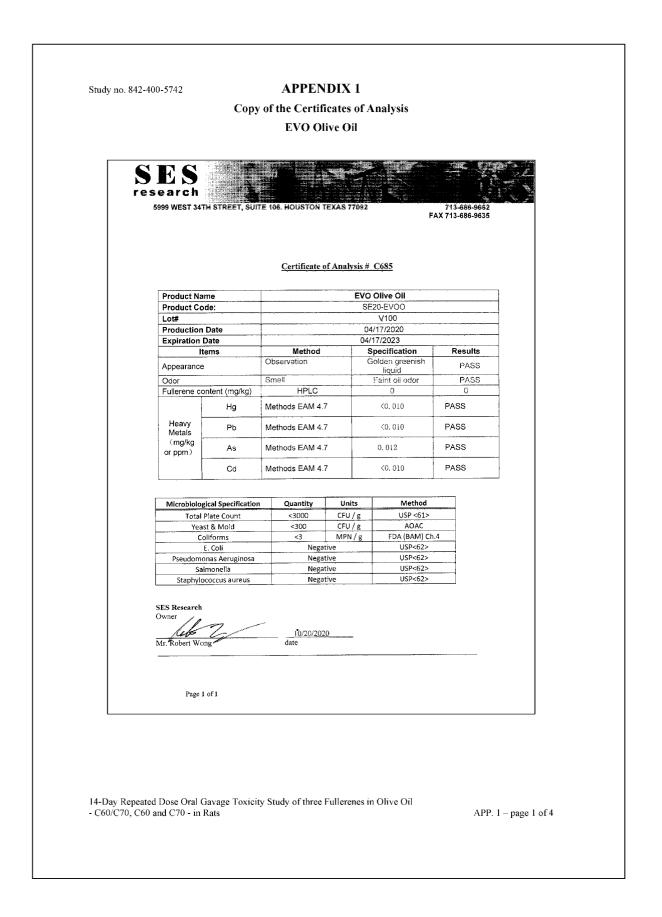
Animals will be anesthetized with Isofluran CP^{\circledast} and will be exsanguinated from the abdominal aorta after verification of deep narcosis.

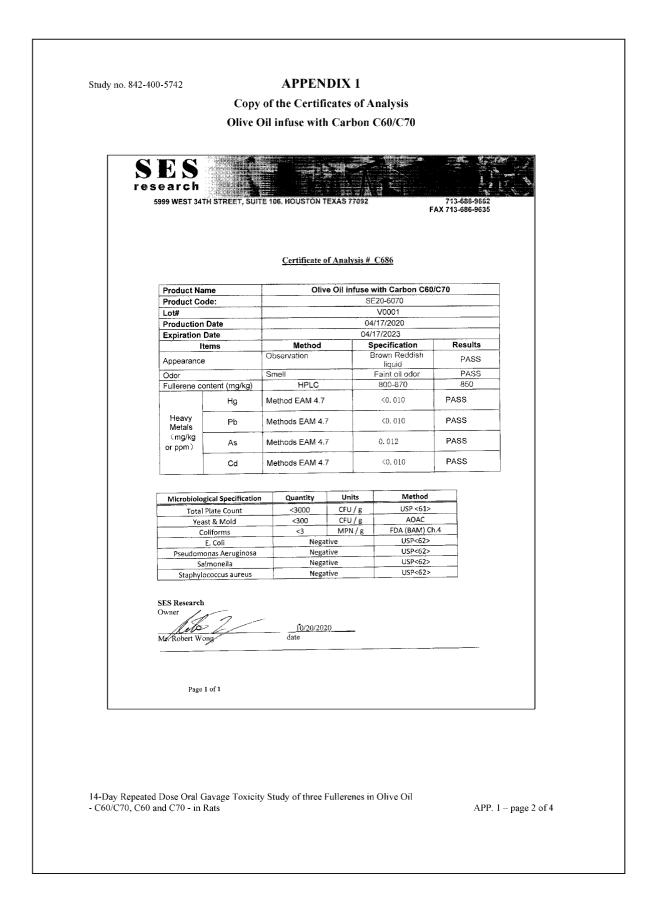

The external appearance (surface of the body, all orifices) will be examined, cranium, thoracic and abdominal cavities will be opened and the appearance of the tissues and organs will be observed macroscopically. All observations will be recorded with details of the location, color, shape and size.

The following organs/ tissues will be removed and preserved in 4 % buffered formaldehyde solution, except testes and epididymides, which will be preserved in modified Davidson solution and then stored in 4 % buffered formaldehyde solution for future histopathological examination:

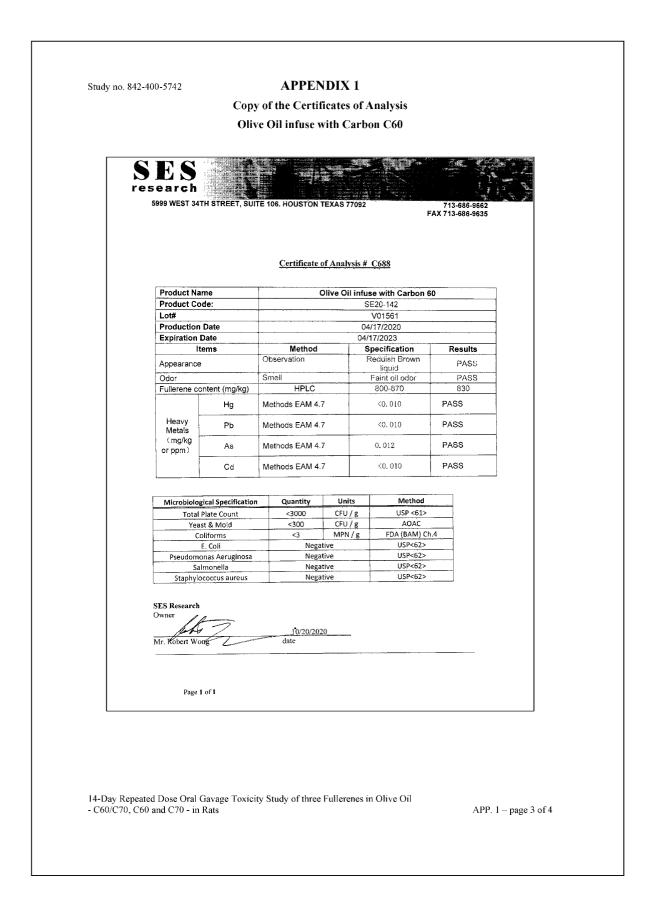
 Table 5: List of organs to be preserved

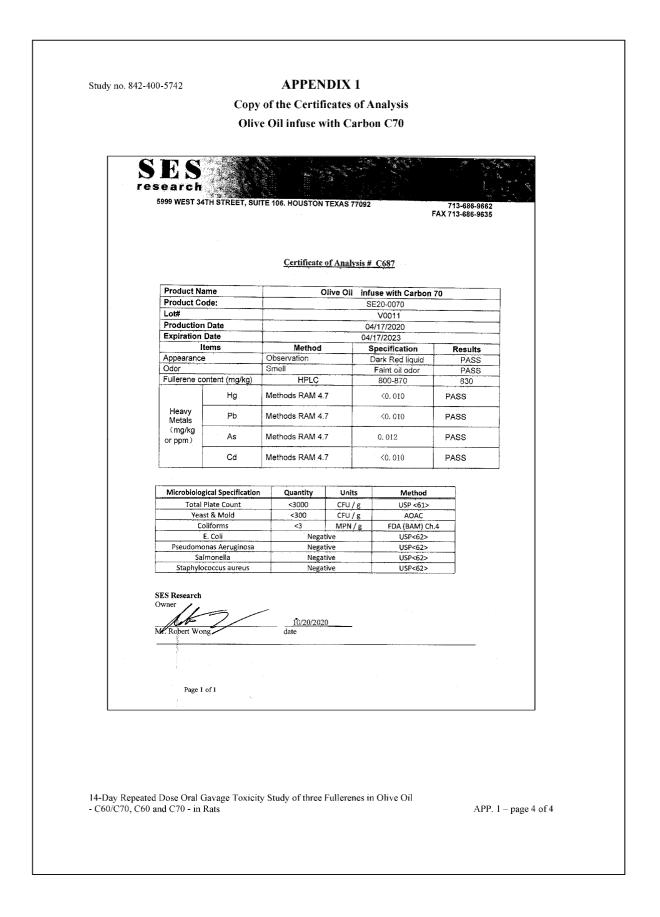
Adrenal glands	
Aorta	
Bone with joint and marrow (femur)	
Brain (representative regions: cerebrum, cerebellum and pons and med	
ay Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil	


	Table 5: List of organs to be pres	served
	Esophagus	
	Eyes (lachrymal gland wit	
		ymides, ovaries, uterus with vagina)
	Gross lesions	
	Heart Kidneys	
	ş	colon, rectum, including Peyer's patches),
	Liver	colon, rectain, monading rever s patentos),
	Lungs (with main stem bro Lymph nodes (submandibu	nchi; inflation with fixative and then immersion;) Ilar, mesenteric)
	Mammary gland	
	Muscle (quadriceps)	
	Nasal turbinates	
	Pancreas Pituitary	
	Prostate	
	Salivary glands (submandi	bular)
	Sciatic nerve	
	Seminal vesicle with coag	ulating gland
	Skin Small intestines (represent	ative regions: duodenum, ileum, jejunum)
		:: cervical, mid-thoracic and lumbar)
	Spleen	
	Sternum	
	Stomach	
	Thymus Thyroid + parathyroid	
	Trachea	
	Urinary bladder	
	* Thyroid and parathyroid will be	e preserved together with larynx but larynx will not be processed histologically.
	Unscheduled sacrifice:	
		ficed because of a moribund condition will be examined for the
		d condition on the day the observation is made. Rats will be
	evaluated for gross lesions.	All organs/ tissues will be removed and preserved as specified
	above.	
	Organs and tissues will be as described for those animation	excised, weighed (except for animals found dead) and preserved als sacrificed by design.
5.8.2	Organ weight	
	The following organs will b	e weighed and recorded. Paired organs will be weighed together.
	With precision of 0.01g:	Liver, kidneys, testes, epididymides, prostate + seminal vesicles with coagulating glands as a whole, uterus and fallopian tubes, thymus, spleen, brain and heart.
	With precision of 0.001g:	Adrenal glands, ovaries
		city Study of three Fullerenes in Olive Oil


Study 1	no. 842-400-5742
7.0	Animal welfare
	Institutional Animal Care and Use Committee (IACUC) of Toxi-Coop Zrt. permit the conduct of the study by signature on the Study Plan. (SOP: ALT 023 - Instructions for animal protection) The study will be conducted according to the National Research Council Guide for the Care and Use of Laboratory Animals and in compliance with the principles of the Hungarian Act 2011 CLVIII (modification of Hungarian Act 1998 XXVIII) and Government Decree 40/2013 regulating animal protection.
8.0	Reporting
	 The results of the study will be reported in a detailed Final Report in English. The Final Report will include but will not be limited to: General information and statements: Name and address of the Sponsor, the test facility and the study schedule; The names of the study director and other scientists and supervisory personnel involved in the study; The statement of GLP compliance, signed by the study director; The signature and statement of the management; The Quality Assurance statement, signature QA; A list of all deviations to the Study plan and a statement on their possible impact on quality and integrity of the study results; Details of archiving (the storage location, list of archived data and samples, time for archiving); Test item: Characterization of test item components: The identification of the test item components, either by name or code number. The concentration, purity, stability, composition and other appropriate characteristics of the test item components, if the Sponsor provides data; A copy of the analytical certificate of the test item;
	 Test animals: A description of the animals: species/strain, source, health status (microbiological, if known), number, age, sex, identification, weight at commencement of the study, group size; Details of housing conditions (room number, caging, bedding material, environmental conditions, etc.); Details of food and water quality (including diet type/ source, water source);
	 Test Conditions: Rationale dose level selection; Details of the test item formulation; Details of the administration of the test item (way of dosing, time of dosing, treatment procedures);
	y Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil C70, C60 and C70 - in Rats page 22 of 24

	 Results: All investigated parameters will be presented in individual and summary tables; Toxic response data by sex and dose level, including signs of toxicity; Nature, severity and duration of clinical observations (whether reversible or not); Body weight/body weight changes; Food consumption and feed efficiency; Hematological tests; Clinical biochemistry tests; Necropsy findings; Body weight at necropsy and organ weight data (absolute and organ to body weight and organ to brain weight ratios); Histopathology findings;
	- Statistical treatment of results, where appropriate
	Discussion and interpretation of the results
	Conclusion
Ə. 0	Distribution of the study plan
	Internal units ⁺ , DDE
	Internal units [†] : PDF [†] = Quality assurance, formulation, clinical pathology and histopathology laboratory, statistical unit.
10.0	† = Quality assurance, formulation, clinical pathology and histopathology laboratory,
<u>10.0</u>	† = Quality assurance, formulation, clinical pathology and histopathology laboratory, statistical unit.


11.0	Abbreviat	ions
	Ad libitum APP/ App. Bw or bw °C cm DAkkS: DVM EC EMMI GLP GmbH h kg, g, mg L, mL Ltd. MSDS min. OECD PDF PhD Ref. QA SD SOP SPF u Zrt. % ±	at will Appendix Body weight Degrees centigrade Centimeter Deutsche Akkreditierungsstelle (D-PL-14082-01-00) Doctor of Veterinary Medicine European Community Emberi Erőforrások Minisztériuma (Ministry of Human Resources) Good Laboratory Practice Gesellschaft mit beschränkter Haftung (Limited Liability Company) Hour(s) Kilogram, gram, milligram Liter, milliliter Limited Liability Corporation/Company Material Safety Data Sheet Minute(s) Organisation for Economic Co-operation and Development Portable Document Format Doctor of Philosophy Reference Quality Assurance Standard deviation Standard Operating Procedures Specific Pathogen Free Utca (street in Hungarian) Zártkörűen működő Részvénytársaság (Private Limited Company) Percentage Plus/minus
14-Day		



Copy of the Study Plan

14-Day Repeated Dose Oral Gavage Toxicity Study of three Fullerenes in Olive Oil - C60/C70, C60 and C70 - in Rats

tudy no. 842-400-5742			PENDIX 2 ontents of		
SSN	IFF® SM R		Complete diet for rats an	ıd mice	
S8106-S011 15 mr	n Pellets		Producer: ssniff Spezi	aldiäten Gr	nbH
Crude nutrients ['	%]		Minerals [%]		
Dry matter	88.4		Calcium	1.00	
Crude protein	19.0		Phosphorus	0.70	
Crude fat	3.5		Sodium	0.20	
Crude fibre	3.6		Magnesium	0.22	
Crude ash	6.5		Potassium	0.78	
N free extracts	55.9				
Starch	39.5				
Sugar	4.8				
Amino acids [%]			Vitamins (per kg)		
Lysine	1.12		Vitamin A	25 000	IU
Methionine	0.56		Vitamin D3	1 000	IU
Met+Cys	0.89		Vitamin E	135	mg
Threonine Threatenh ar	0.63		Vitamin K (as menadi	· · ·	mg
Thryptophan Arginine	0.23 1.08		Thiamine (B1) Riboflavin (B2)	86 32	mg
Histidine	0.43		Pyridoxine (B6)	32 31	mg mg
Valine	0.43		Cobalamin (B12)	150	μg
Isoleucine	0.72		Nicotinic acid	170	mg
Leucine	1.25		Pantothenic acid	62	mg
Phenylalanine	0.82		Folic acid	10	mg
Phe+Tyr	1.36		Biotin	730	μg
Glycine	0.77		Choline-Chloride	2 910	mg
Glutamic acid	3.99		Inositol	100	mg
Aspartatic acid	1.45				
Proline	1.28				
Alanine	0.75				
Serine	0.86				
Trace elements (p			Energy		
Iron	166	mg	Metabolizable Energy	: 13.4	MJ/kg
Manganese	71	mg			
Zinc	94 15	mg			
Copper	15	mg mg			
Iodine Selenium	2.2 0.3	mg mg			
Cobalt	0.3 2.1	mg			
coour	2.1	mg			
These data are stan	dard and gu	aranteed	values provided by the sup	plier.	
4-Day Repeated Dose Oral (C60/C70, C60 and C70 - in		ty Study of	three Fullerenes in Olive Oil	L	APP. 2 – page 1 of 1
				1	page 1 of 1

Copy of the Good Laboratory Practice (GLP) Certificate of the Test Facility

OGYEI	1051 Budapest, Zrinyi u. 3. Levélcím: 1372 Postafiók 450.
Országos Gyógyszerészeti és Élelmezés-egészségügyi Intézet	Tel.: (1) 8869-300, Fax: (1) 8869-460 E-mail: ogyei@ogyei.gov.hu, Web: www.ogyei.gov.hu
	Ref. no: OGYÉI/8623-5/2019
	Admin.: dr. Szaller Zoltán
	Date: 22 May, 2019
	ORY PRACTICE (GLP) IFICATE
t is hereby certified that the test facility	
TOXI-COOP Toxicolg	ical Research Center Zrt.
H-8230 Balatonfü H-8230 Balaton	st, Berlini u. 47-49., red, Arácsi u. 97-99., ifüred, Vasút u. 3., red, Galamb u. 12/A , füred. Ady F. u. 12.
	acs, hrsz 4150/2
8354 Karma	
8354 Karma s able to carry out physico-chemical testing, toxicity studies,	acs, hrsz 4150/2
8354 Karma s able to carry out physico-chemical testing, toxicity studies, tudies on aquatic and terrestrial organism io-accumulation studies, analytical and cli	ncs, hrsz 4150/2 mutagenicity studies, environmental toxicity as, studies on behaviour in water, soil and air; inical chemistry, safety pharmacology testing,
8354 Karma s able to carry out physico-chemical testing, toxicity studies, tudies on aquatic and terrestrial organism io-accumulation studies, analytical and cli metabolism and toxico/pharmacokinetics	mutagenicity studies, environmental toxicity as, studies on behaviour in water, soil and air; inical chemistry, safety pharmacology testing, testing, testing of toxicological properties of
8354 Karma s able to carry out physico-chemical testing, toxicity studies, tudies on aquatic and terrestrial organism io-accumulation studies, analytical and cli metabolism and toxico/pharmacokinetics operative procedures and equipment, re	ncs, hrsz 4150/2 mutagenicity studies, environmental toxicity as, studies on behaviour in water, soil and air; inical chemistry, safety pharmacology testing, testing, testing of toxicological properties of eproduction toxicological studies, tolerance
8354 Karma s able to carry out physico-chemical testing, toxicity studies, tudies on aquatic and terrestrial organism io-accumulation studies, analytical and cli metabolism and toxico/pharmacokinetics operative procedures and equipment, re	mutagenicity studies, environmental toxicity as, studies on behaviour in water, soil and air; inical chemistry, safety pharmacology testing, testing, testing of toxicological properties of
8354 Karma s able to carry out physico-chemical testing, toxicity studies, tudies on aquatic and terrestrial organism io-accumulation studies, analytical and cli metabolism and toxico/pharmacokinetics operative procedures and equipment, re studies, inhalation toxic	ncs, hrsz 4150/2 mutagenicity studies, environmental toxicity as, studies on behaviour in water, soil and air; inical chemistry, safety pharmacology testing, testing, testing of toxicological properties of eproduction toxicological studies, tolerance
8354 Karma s able to carry out physico-chemical testing, toxicity studies, tudies on aquatic and terrestrial organism io-accumulation studies, analytical and cli metabolism and toxico/pharmacokinetics operative procedures and equipment, re studies, inhalation toxic	mutagenicity studies, environmental toxicity as, studies on behaviour in water, soil and air; inical chemistry, safety pharmacology testing, testing, testing of toxicological properties of eproduction toxicological studies, tolerance cology and in vitro studies
8354 Karma s able to carry out physico-chemical testing, toxicity studies, tudies on aquatic and terrestrial organism bio-accumulation studies, analytical and cli metabolism and toxico/pharmacokinetics operative procedures and equipment, re studies, inhalation toxic n compliance with the Principles of GLP (Go ne corresponding OECD/European Communi	mutagenicity studies, environmental toxicity as, studies on behaviour in water, soil and air; inical chemistry, safety pharmacology testing, testing, testing of toxicological properties of eproduction toxicological studies, tolerance cology and in vitro studies bood Laboratory Practice) and also complies with ity requirements.
8354 Karma s able to carry out physico-chemical testing, toxicity studies, tudies on aquatic and terrestrial organism io-accumulation studies, analytical and cli metabolism and toxico/pharmacokinetics operative procedures and equipment, re studies, inhalation toxic	mutagenicity studies, environmental toxicity as, studies on behaviour in water, soil and air; inical chemistry, safety pharmacology testing, testing, testing of toxicological properties of eproduction toxicological studies, tolerance cology and in vitro studies bood Laboratory Practice) and also complies with ity requirements.
8354 Karma s able to carry out physico-chemical testing, toxicity studies, tudies on aquatic and terrestrial organism bio-accumulation studies, analytical and cli metabolism and toxico/pharmacokinetics operative procedures and equipment, re studies, inhalation toxic n compliance with the Principles of GLP (Go ne corresponding OECD/European Communi	mutagenicity studies, environmental toxicity as, studies on behaviour in water, soil and air; inical chemistry, safety pharmacology testing, testing, testing of toxicological properties of eproduction toxicological studies, tolerance cology and in vitro studies bood Laboratory Practice) and also complies with ity requirements.