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ABSTRACT 

As a dynamic system in which different factors affect human performance via dynamic interactions, mental work-
load needs a dynamic measure to monitor its factors and evidence in a complicated system, an approach that is 
lacking in the literature. The present study introduces a system dynamics-based model for designing feedback 
mechanisms related to the mental workload through literature review and content analysis of the previous studies. 
A human-based archetype of mental workload was detected from the data collection process. The archetype is 
presented at various stages, including dynamic theory, behavior over time, leverage points and model verification. 
The real validation of the dynamic model was confirmed in an urban train simulator. The dynamic model can be 
used to analyze the long-term behavior of the mental workload. Decision-makers can benefit from the developed 
archetypes in evaluating the dynamic impact of their decisions on accident prevention in the complicated systems. 
 
Keywords: Mental workload, ergonomics, archetype, review, system dynamics 
 
 
 

INTRODUCTION 

The reason for errors, crashes, accidents 
and disasters made by human can be due to 

unbalance mental workload resulting in over-
load and underload situations exposing oper-
ators to approach or exceed the redlines of 
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their performance (Xie and Salvendy, 2000; 
Paxion et al., 2014; Young et al., 2015; 
Wascher et al., 2016). On the other hand, the 
balance in the workload reduces the human 
error and increases the task performance of 
operators (Xie and Salvendy, 2000; Yu et al., 
2016; Zhao et al., 2016). Therefore, the con-
cept of mental workload and mechanism of its 
effect on task performance in different hu-
man-machine systems is considered by prac-
titioners and researchers in a variety of cogni-
tive activities, such as conventional driving 
(Allahyari et al., 2014; Hassanzadeh-Rangi et 
al., 2014; Yan et al., 2019), automated driving 
(Ko and Ji, 2018), train driving (Balfe et al., 
2017), nuclear power plants (Choi et al., 
2018), advanced surgery programs (Cavuoto 
et al., 2017), air traffic monitoring (Dasari et 
al., 2017), control rooms (Melo et al., 2017), 
workplace activities (Chen et al., 2017), infor-
mation technologies (Buettner, 2017) and 
other complex human-machine systems (Xiao 
et al., 2015). Few conceptual frameworks are 
available for understanding mental workload 
mechanism based on the static relationship 
extracted from traditional statistics (Xie and 
Salvendy, 2000). However, the mental work-
load and its evidence, i.e. fatigue and other 
psycho-physiological responses, are dynamic 
phenomena affected by the various factors in 
different time intervals (Charbonnier et al., 
2016). System thinking can be a successful 
approach in examining the dynamic pattern of 
change and drawing behavior over time in-
stead of static snapshots (Senge, 2006). Sys-
tems thinking can be conducted by system dy-
namics approach. Causal-loop archetypes in 
the form of stock-flow diagrams describe the 
structure of a system in system dynamics. A 
stock-flow diagram consists of state (level), 
flow (rate) and auxiliary (constant) variables. 
Math equations determine the relationships 
between variables in stock-flow diagrams. 
System dynamics is supported by the graphics 
simulation programs including Vensim, Pow-
ersim and i-think to describe behavior over 
time (Sterman, 2001; Yim et al., 2004; Azar, 
2012). There are no applications of system 
thinking and system dynamics in mental 

workload research. This work, therefore, tries 
to fill these gaps by developing the mental 
workload archetypes and their behavior over-
time with a focus on task demand and human 
performance. 

 
METHODS 

Literature search 
Contributing factors and their relations as 

well as conceptual models were extracted 
from the literature review. We reviewed three 
databases including Scopus, Web of Science 
and Pubmed International Profile for related 
articles published between 2007 and 2018 and 
related abstracts of international conferences 
held between 2014 and 2018. The keywords 
were (workload OR mental workload) AND 
(model OR measurement OR evaluation OR 
assessment OR predicting OR survey OR rat-
ing OR scale OR Index OR questionnaire).  

We screened 339 articles out of 979 arti-
cles based on the inclusion criteria, including 
original article, full-text article, publication in 
English, quantitative data analysis, transpar-
ency in presenting research methods and re-
sults, and other quality rating appraisal 
(Khosravi et al., 2014a; Mohammadi et al., 
2018b). 

 
Content analysis  

We extracted the contributing factors of 
mental workload and their relations through 
reviewing the abstracts and related parts of 
358 included articles. Also, we reviewed, if 
necessary, the full text of the included articles 
for further certainty. We extracted a static 
conceptual model and its assumptions by re-
viewing the full text of 87 articles. We simul-
taneously categorized the reviewed studies on 
the basis of reference type, study design, data 
collection tools, field, setting, analytical 
method, variables, and key results (see Sup-
plementary Table 1). Direct content analysis 
followed by theme analysis helped to extract 
contributing factors, evidence, and concep-
tual static and dynamic models (Khosravi et 
al., 2013, 2014b; Asilian-Mahabadi et al., 
2018; Mohammadi et al., 2018a). Peer review 
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confirmed that the data saturation has oc-
curred in the content analysis, and themes are 
properly extracted. 

 
System dynamics modeling 

At first, we explained the real problem in 
the context of mental workload monitoring. 
Then, we extracted the contributing factors of 
mental workload in the framework of a static 
model.  

In the second stage, we determined the dy-
namic hypothesis between the variables of the 
static model based on the statistical relation-
ships of previous studies (Mohammadi et al., 
2018a). The Vensim software (version 5.10) 
was used to plot the mental workload arche-
type. In this software, the archetype variables 
including stocks, flows and, auxiliaries, were 
displayed in rectangles, hourglass shapes and 
plain texts, respectively. In this software, the 
stock variables displayed in rectangles pre-
sent the level of the archetype variables over 
time. The flow variables displayed in hour-
glass shapes exhibit the rate of stock variables 
over time. The auxiliary variables displayed 
in the plain texts (surrounded by the brackets 
in some cases) indicate the constant values 
and other variables of the archetype. One-way 
arrows show the cause-effect relationship be-
tween two variables. Circular arrows tagged 
with A and B show the balancing feedbacks 
and reinforcing feedbacks, respectively 
(García, 2019).  

The third stage was the definition of the 
stock-flow diagrams to the math equations 
ruling on the variables. The formulation in the 
Vensim software was done through simple 
math equations such as integration. The look-
up function in the Vensim software allowed 
us to estimate the internal relations of some 
variables in relation to each other over time.  

The fourth stage was the simulation and 
testing process. We extracted the simulation 
outputs as the graphs displaying the relation-
ships between the variables over time. There 
are different methods of validation, including 
the structure test, boundary test, dimension 
consistency, parameter verification, extreme 
conditions, and structurally oriented behavior 

test to validate  the stock-flow diagrams (Yim 
et al., 2004; Babader et al., 2016). The struc-
ture assessment and the Vensim features were 
used to perform dimension checks, extreme 
conditions analysis, sensitivity test, and real-
ity check. Sterman (2001) and García (2019) 
provide detailed characteristics of system dy-
namics. 

The real validation of the dynamic model 
was carried out in an urban train simulator. 
Twelve healthy male metro train drivers (age 
range of 25 to 45 years; driving experience of 
1 to 5 years; physically and mentally healthy; 
drug free; and nonsmokers) volunteered to 
participate in an experimental study. The ex-
perimental route was a part of Tehran metro 
line 1 (39 km, 20 min). The scenarios were 
designed according to the real train operation 
and the rule books. The experimental tasks 
were divided into two categories: getting 
ready to drive and driving between stations. 
The getting ready to drive consisted of  chang-
ing the train’s direction; completing the train 
dispatching procedure, including train activa-
tion, train safety activation, and check-up; ob-
serving and obeying signaling indications and 
train warning systems. The driving between 
stations consisted of driving the train along 
the track; obeying speed limits and other train 
protection orders; monitoring the surrounding 
environment; observing and obeying signal-
ing indications and train warning systems; 
stopping the train at a specific area in the sta-
tions; opening and closing train doors; enter-
ing and leaving stations within the speed 
limit. A high-fidelity simulator was used for 
the experimental driving tasks in this study. 
Train drivers evaluated their workload status 
by using the integrated workload scale (IWS) 
during the particular driving tasks. The men-
tal workload can be assessed by specific sub-
jective scales. The IWS is a self-rating tool to 
assess mental workload in real-world settings, 
and it is sensitive to several environmental 
and task-related factors in railway industry 
(Pickup et al., 2005; Wilms and Zeilstra 
2013). In these methods, operators are able to 
rate work demands themselves on a numerical 
or graphical scale (Young et al., 2015).  
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The environmental parameters in the sim-
ulated cabin were maintained to the same con-
ditions of the real cabin. The illumination 
level (in Lux), the wet bulb globe temperature 
(in °C) and the noise level (in dBA) were 
measured to ensure that these parameters 
were consistent between the real and simu-
lated environment. The average judgment of 
drivers from their mental workload in differ-
ent situations was entered manually in the ref-
erence mode of the Vensim software.  

In the fifth stage, the model behavior over 
time was utilized to design the leverage 
points. The leverage points could have ad-
vantages for decision makers to improve the 
complicated systems (Mohammadi et al., 
2018a). The flow chart of the study design is 
presented in Figure 1.  

 

RESULTS AND DISCUSSION 

Conceptual model and real problem 
According to previous reports and content 

analysis, we extracted the main variables (or 
measures) probably useful for the assessment 
of the mental workload in a complex system. 

Accordingly, the result was 90 measures (var-
iables) in this regard. These variables were 
further condensed according to some of the 
common themes that were later classified un-
der 9 categories. These variables were 
grouped into 23 themes (sub-factors) and 
three factors (or evidence), namely 1) task de-
mand and job characteristics 2), external and 
environmental stress, and 3) individual capa-
bilities and characteristics. (Supplementary 
Table 2 shows summarized factors and sub-
factors, along with the strength of their evi-
dence.) 

Previous research on the mental workload 
underlined three main gaps, which may pre-
vent previous findings widely used in practi-
cal fields in the complex systems. First, the 
studies are limited to one or two variables. 
Second, the results are too narrow with no ap-
proaches for generalizing the results. Third, 
all results are static, where just one variable 
has been assigned to mental workload during 
the study. In contrast, mental workload is usu-
ally a time-based issue, and the type of de-
mand assigned to operators is a dynamic pat-
tern. 

Figure 1: Flow diagram of the study design
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To address these gaps, the human-based 
archetypes were developed by system dynam-
ics to account for the various factors of mental 
workload. Using this dynamic model, the dy-
namic relations among mental workload and 
related contributing factors were depicted to 
optimize mental workload balance resulting 
in improved performance. The human-based 
archetype of mental workload is presented as 
follows. 

 
Human-based archetype of mental  
workload 

Dynamic theory 
The basic principles of the physiological 

dimensions of mental workload follow the as-
sumption that physiological responses depend 
on physiologically active mechanisms in 
high-demand jobs (Ryu and Myung, 2005). 

The alterations in resource capacity and 
operator performance can be seen in the phys-
iological feedbacks (Mehler et al., 2009). 
Moreover, the mental workload of operators 
can be monitored within the operation phase 
using physiological measures (Durkee et al., 
2013). Such measures are passive with no 
need for an overt response from the operator 
and allow continuously monitoring the mental 
workload (Cain, 2007). The physiological 
workload measures are hardly widely used in 
the practical fields because of the need for 
specialists for application and analysis (Teo et 
al., 2015; Chuang et al., 2016).  

Figure 2 shows the archetype of resource 
supply consisting of two balancing loops (B1 
Mental activation, and B2 Mental burnout). According to 
the theory of limited resources, the human 
mind has limited resources for thoughtful pro-
cessing (Alvanchi et al., 2011). As shown in 
B1 Mental activation loop, the level of resource 
supply is the result of the interaction between 

resource recovery rate and resource consump-
tion rate during the operating period. Thus, a 
resource consumption rate higher than re-
source recovery rate leads to resource limita-
tion. The resource limitation decreases task 
performance and consequently increases per-
formance pressure and mental workload. As a 
result, in a short time, brain and cardiovascu-
lar activities increase the number of available 
resources. As shown in B2 Mental burnout, in a 
long time, the excessive consumption of re-
sources leads to decreased task performance. 
In return, the decreased task performance in-
creases the performance pressure, mental 
workload and mental fatigue, respectively 
(Alvanchi et al., 2011; Young et al., 2015). 

Individual characteristic is a key auxiliary 
variable that influences the internal variables, 
including psycho-physiological response, 
workload modification, resource consump-
tion, resource recovery, and productivity ratio 
and ultimately the recognized feedback loops. 
(The formulated model and its equations are 
presented in Supplementary Table 3.) 

The typical behavior of the resource sup-
ply and mental workload interaction over time 
is shown in Figure 3. At the beginning of a 
complex operation, as mental workload in-
creases, the B1 Mental activation loop will be acti-
vated and the resources will be available. 
Simultaneously, the new resources are re-
placed by resource recovery process 
(Alvanchi et al., 2011). Although the level of 
workload is under control until the end of the 
operation, the cumulative fatigue activates the 
B2 Mental burnout loop. As a result, the available 
resources gradually decrease to 50 % of its in-
itial level. The behavioral pattern of mental 
workload and resource supply in this study is 
consistent with the conceptual patterns drawn 
in the previous studies (De Waard, 1996; 
Young et al., 2015). 
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Figure 2: The human-based archetype of mental workload 

Figure 3: The behavior pattern of resource supply and mental workload archetype over time
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Leverage points 
The leverage point of resource supply and 

mental workload archetype relies on the bal-
ancing B2 Mental burnout loop. This archetype fo-
cuses more on the human aspect of complex 
systems. Behavior over time of this archetype 
shows that the mental overload leads to over-
coming the resources consumption rate to re-
sources recovery rate. As a result, mental fa-
tigue appears in the short-term and mental 
burnout in the long-term. Therefore, modera-
tion of mental demand and external stress 
should be proportional to individual charac-
teristics. This moderation, on the one hand, 
should be made in such a way as to provide an 
opportunity to recover resources over time. 
On the other hand, the performance pressure 
should be appropriate as the other input of the 
mental workload. 

 
Verification of the dynamic model 

The verification methods used in this 
study were the structure assessment, the ex-
treme conditions, the sensitivity analysis, and 
the real validation. The structure assessment 
tests verify that the model is compatible with 
real-world knowledge (Sterman, 2001). In 
this study, the content analysis is used to de-
velop the static and dynamic models of men-
tal workload. Since the content analysis is 
based on the previous studies and the data sat-
uration, the structure assessment has been 
done during the developing process of the 
conceptual models. As well as, a significant 
agreement was found between two reviewers 
in the thematic coding of the contents in ac-
cordance with the results of the inter-rater re-
liability (kappa=0.91). Furthermore, other 
structure tests were performed through peer 
review and expert verification. The blinded 
experts, who participated in four interviews 
and a focus group, logically approved the 
stock-flow diagrams. In addition, these ex-

perts reported that the real operation con-
firmed the results of behavior over time ex-
tracted from the Vensim software for mental 
workload modeling.  

The results of behavior over time for the 
human-based archetype of mental workload 
showed the behavior of the dynamic model is 
logical at different levels of the task demand. 
Sensitivity analysis (Figure 4A, B and C) 
shows that as long as the task demand in-
creases, the mental workload increases, and 
the resource supply decrease. The extreme 
conditions analysis (Figure 4A and C) showed 
at the lowest level of duty demand, the trend 
of increasing mental workload is minimal and 
related to the performance pressure. In these 
conditions, the trend of increasing mental fa-
tigue and reducing resource supply is mini-
mal. At the highest level of task demand, the 
trends of increasing mental workload and fa-
tigue, and reducing resource supply are max-
imal. (Supplementary Figure 1 shows the 
Vensim software runs under different condi-
tions on various variables in the dynamic 
model.)  

Comparison of the reference mode and the 
model simulation (Figure 5) indicates that the 
dynamic model can estimate the mental work-
load close to reality in the urban train simula-
tor.  

The reference mode displays the actual 
pattern of mental workload over time during 
the experimental driving tasks. The simula-
tion mode displays the simulated pattern of 
mental workload over time according to the 
experimental driving data. Figure 5 shows 
that at the beginning of the experimental tasks 
(getting ready to drive), as long as the task de-
mand increases, the mental workload in-
creases in both the reference mode and the 
simulation mode. The behavioral pattern of 
mental workload is under control and similar 
during driving between stations until the end 
of the operation in both reference mode and 
simulation mode.  
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A 

 

B 

Figure 4: Extreme conditions (A: 1 % task demand, and C: 100 % task demand) and sensitivity analysis 
(A: 1 % task demand, B: 50 % task demand and C: 100 % task demand) of the dynamic model 
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C 

Figure 4 (cont.): Extreme conditions (A: 1 % task demand, and C: 100 % task demand) and sensitivity 
analysis (A: 1 % task demand, B: 50 % task demand and C: 100 % task demand) of the dynamic model 
 
 
 

Figure 5: Real validation of the human-based model
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OVERALL DISCUSSION AND  
CONCLUSION  

Contribution to the complicated system 
In the present study, a simulation ap-

proach was used to understand the complexi-
ties of mental workload in complex systems. 
Human performance management encounters 
numerous challenges in complex operations 
due to the dynamic nature of complex opera-
tions and interactions between the factors af-
fecting the mental workload. In this study, the 
dynamical mechanism of mental workload 
and its interaction with task demand and re-
sources supply variables were simulated. The 
simulated models in this study can be applied 
to 1) identify changes in mental workload and 
its outcomes, such as task performance and 
mental fatigue during operations. 2) extract 
corrective and preventive measures based on 
a dynamic approach to optimize workload 
during complex operations. The current study 
in line with the previous studies has shown 
that both overload and underload could have 
adverse effects on humans and their perfor-
mance (Young et al., 2015). 

 
Limitations and future research 

In this study, factors affecting the work-
load were reviewed over a ten-year period. 
Although data saturation was achieved in the 
extraction of themes and factors, the research-
ers encountered a lack of studies to confirm 
some of the relationships between variables. 
To overcome this shortcoming, content valid-
ity and expert judgment were used (Hassan-
zadeh-Rangi et al., 2014). An updated review 
can help improve the results of this study in 
the future. In this study, various validation 
methods were used to confirm the conceptual 
model, archetypes and behavior over time. 
For more validity and generalizability of the 
dynamic model, it is necessary to study the 
current archetypes in future empirical studies. 

 

CONCLUSION 

In the present study, the conceptual 
framework of mental workload and its con-
tributing factors was developed using litera-
ture review. The system dynamic approach 
indicated the interactions between the factors 
affecting the mental workload in the form of 
behavioral patterns (archetypes). The behav-
ior over time of mental workload archetype 
was simulated with a focus on the human-
based variables. The result showed that the 
dynamic models could be used to analyze the 
long-term behavior of the mental workload, 
taking into account the various contributing 
factors and the associated uncertainty. In ad-
dition, this study can be considered as a start-
ing point for future research through a combi-
nation of mental workload and system dy-
namics. 
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