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ABSTRACT 

Cyclosporin A (CsA) is known to have an immunosuppressive action. However, it is also attracting attention due 
to its effects on the nervous system, such as inhibiting the development and expression of morphine-induced 
tolerance and dependence through unknown mechanisms. It has been shown that CsA modulates the nitric oxide 
(NO) synthesis and extracellular signal-regulated kinases (ERK) activation, which are potentially involved in 
signaling pathways in morphine-induced tolerance in cellular models. Therefore, the current study was designed 
to evaluate the modulatory role of CsA on the MOR tolerance, by targeting the downstream signaling pathway of 
NO and ERK using an in vitro model. For this purpose, T98G cells were pretreated with CsA, calcineurin 
autoinhibitory peptide (CAIP), and NG-nitro-l-arginine methyl ester (L-NAME) 30 min before 18 h exposure to 
MOR. Then, we analyzed the intracellular cyclic adenosine monophosphate (cAMP) levels and also the expression 
of phosphorylated ERK and nitric oxide synthase (nNOS) proteins. Our results showed that CsA (1 nM, 10 nM, 
and 100 nM) and CAIP (50 µM) have significantly reduced cAMP and nitrite levels as compared to MOR-treated 
(2.5 µM) T98G cells. This clearly revealed the attenuation of MOR tolerance by CsA. The expression of nNOS 
and p-ERK proteins were down-regulated when the T98G cells were pretreated with CsA (1 nM, 10 nM, and 100 
nM), CAIP (50 µM), and L-NAME (0.1 mM) as compared to MOR. In conclusion, the CsA pretreatment had a 
modulatory role in MOR-induced tolerance, which was possibly mediated through NO/ERK signaling pathway. 
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INTRODUCTION 

Cyclosporin A (CsA) is an immunosup-
pressant drug which mediates its action 
through binding with immunophilin. Through 
inhibiting calcineurin enzyme, the CsA and 
immunophilin complex blocks the signaling 
pathways of calcineurin/NFAT (Matsuda and 
Koyasu, 2000). Calcineurin (CaN), also 
known as a calcium-regulated protein, is a 
Ca2+/CaM-dependent serine/threonine phos-
phatase, and causes the release and mobiliza-
tion of Ca2+ from intracellular stores (Kipan-
yula et al., 2016). Although CsA is an immu-
nosuppressant, its modulatory role in the 
functions of the central nervous system (CNS) 
has been evaluated through its activity on the 
modulation of neurotransmitters release 
(Steiner et al., 1996), its influence on the re-
lease of calcium from intracellular stores and 
neurotrophic activities (Snyder et al., 1998). 
Moreover, its protective action against the 
neurotoxicity induced by nitric oxide 
(Trajković et al., 1999) and glutamate (Ruiz 
et al., 2000) serves as an evidence of the 
mentioned function. The inhibitory action of 
CsA on morphine-induced place conditioning 
(Langroudi et al., 2005), on tolerance and de-
pendence (Homayoun et al., 2002b; Mehr et 
al., 2003) and also its antinociceptive effect 
(Homayoun et al., 2002a) through inhibiting 
the nitric oxide pathway have been studied 
previously. 

Morphine (MOR) has been used effi-
ciently in the management and treatment of 
chronic pain. However, the development and 
expression of tolerance limits the therapeutic 
efficacy of the drug (Pajohanfar et al., 2017). 
The cellular and molecular mechanisms in-
volved in morphine tolerance are not very 
clear and are linked to various signaling 
mechanisms, including an elevated activity of 
the adenylyl cyclase (AC) which increases the 
cyclic adenosine monophosphate (cAMP) 
levels (Christie, 2008; Nestler, 2004). 
Morphine-induced tolerance and dependence 
can possibly be prevented by reducing the up-
regulation of cAMP (Jamil et al., 2013; Javadi 
et al., 2013). 

It has been reported that morphine toler-
ance can be induced by nitric oxide (NO) 
which is synthesized by nitric oxide synthase 
(NOS) (Mayer et al., 1999), so that increased 
NOS activity accelerates the induction of 
morphine tolerance. Furthermore, NOS 
inhibitors attenuate this effect (Dambisya and 
Lee, 1996; Hassanipour et al., 2018; Khan et 
al., 2017; Rahmati et al., 2017). NOS is acti-
vated by the influx of Ca++ ions that can be 
linked to nNOS which is an isoform of NOS 
and modulates morphine tolerance (Heinzen 
and Pollack, 2004). It has been reported that 
nNOS inhibitors have reversed morphine tol-
erance (Liu et al., 2006). Extracellular signal-
regulated kinases (ERK) is one of the gene 
products of mitogen-activated protein kinases 
(MAPK) pathway (Raman et al., 2007). In-
hibiting morphine-induced ERK activity and 
ERK phosphorylation could be used as a 
signaling mechanism to attenuate morphine 
tolerance (Hawes et al., 2008; Macey et al., 
2009). Moreover, chronic morphine mediates 
the increased level of nNOS which can be 
modulated by the inhibition of the ERK path-
way (Wang et al., 2011). 

As far as CsA is concerned, AC activation 
is attenuated by CsA (Banafshe et al., 2007). 
The catalytic activity of nNOS is reduced by 
cyclosporine A in the nervous system through 
the modulation of calcineurin-dependent 
dephosphorylation of nNOS which subse-
quently inhibits NO release (Rao et al., 1996; 
Snyder et al., 1998). It has been reported that 
CsA decreases the activity and expression of 
nNOS (Diaz-Ruiz et al., 2005). On the other 
hand, CsA can inhibit ERK activation (Gary-
Gouy et al., 2006) and cytokine-induced 
phosphorylation of ERK (Doller et al., 2007) 
as described in some previous researches. 

According to what was discussed above, 
CsA seems to have modulatory effects on 
cAMP, nitric oxide, and ERK pathways. 
Therefore, in the current study, we aim to un-
cover the underlying potential mechanisms of 
CsA in reducing morphine-induced tolerance 
by investigating the NO/ERK pathway 
through conducting different molecular stud-
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ies in vitro. We also attempt to study the pos-
sible involvement of calcineurin under these 
effects. 

 

MATERIALS AND METHODS 

Drugs and reagents 
In the present study, the used drugs and 

reagents were: Cyclosporin A, Morphine hy-
drochloride, N (G)-nitro-L-arginine methyl 
ester (L-NAME), vanadium, sulfanilamide, 
sodium nitrite (NaNO2), 3-(4,5-Dimethylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT), N-(1-naphthyl) ethylenediamine and 
trypsin–EDTA. All of these drugs and rea-
gents were acquired from Sigma (St. Louis, 
MO, USA). High glucose Dulbecco’s 
modified Eagle’s medium (DMEM), fetal bo-
vine serum (FBS), and penicillin/streptomy-
cin were obtained from Biosera (Vienna, Aus-
tria). The other used materials included cal-
cineurin auto-inhibitory peptide (CAIP; 
Tocris Bioscience, UK), cAMP ELISA Kit 
(Aviscera Bioscience, USA), and polyvinyl-
idenedifluoride (PVDF) membrane (Milli-
pore, Germany). 

 
Cell line and antibodies 

In the present study, the used cell line was 
T98G human glioblastoma cell line (derived 
from a glioblastoma multiforme, WHO grade 
IV; Pasteur Institute, Tehran, Iran). The pri-
mary antibodies were nNOS (Neuronal nitric 
oxide synthase) monoclonal antibody, β-actin 
antibody (Santa Cruz Biotechnology, USA), 
ERK (Extracellular signal-regulated kinases) 
antibody, and p-ERK (Phosphorylated ERK) 
antibody (Cell Signaling Technology, USA). 
The secondary antibody was horse-radish pe-
roxidase (HRP)-conjugated antibody (Bio-
Rad, USA). 

 
Preparation of drugs and reagents 

Morphine hydrochloride and L-NAME 
were prepared freshly in cell culture media. 
Dimethyl sulfoxide (DMSO; Merck, Ger-
many) was used to prepare a stock solution of 
CsA. The DMSO (0.1 % v/v) was used in the 
experiments. To the morphine-treated cells, 

the same volume of DMSO was added as a 
vehicle. All the samples were prepared and di-
luted freshly before use.  

 
Preparation and maintenance of cell  
culture 

The cell culture of T98G human glioblas-
toma cell line is widely used for in vitro stud-
ies as it expresses high levels of the opioid re-
ceptors (Khan et al., 2017; Lazarczyk et al., 
2010). The cells were grown in a DMEM me-
dium supplemented with FBS (10 %) and 
penicillin/streptomycin (1 %). Then, they 
were kept in an incubator (37 ºC) and humid-
ified (5 % CO2). The culture medium was 
changed every 24 h. Then, the cells were har-
vested by trypsin-EDTA (Ethylenediamine-
tetraacetic acid) solution (0.25 %). After 
seeding for 24 h, the cells were treated with 
morphine (2.5 µM) for 18 h (Avidor-Reiss et 
al., 1997). Then, the cells were pretreated for 
30 min with media containing cyclosporine (1 
nM, 10 nM, and 100 nM), CAIP (10 µM and 
50 µM), and L-NAME (0.01 mM, 0.1 mM, 
and 1mM) prior to chronic morphine treat-
ment to evaluate their effects on morphine tol-
erance. 

 
Experimental protocols 

Cell viability test (MTT assay) 
In order to investigate the effect of drugs 

on the viability of cells, microculture tetrazo-
lium test (MTT) assay was conducted as de-
scribed previously (Khan et al., 2017, 2018). 
To perform the assay, T98G cells were placed 
in 96-well culture plates for 24 h at a density 
of 2×104 cells per well. Then, the cells were 
exposed to media containing morphine (2.5 
µM), morphine with CsA (1 nM, 10 nM, and 
100 nM), morphine with CAIP (10 µM, 50 
µM), and morphine with L-NAME (0.01 mM, 
0.1 mM, and 1 mM) for 18 h. Next, the 
medium was removed and MTT solution (0.5 
mg/ml/well) was added to each well and incu-
bated in darkness for 3 h at 37 °C. Then, the 
solution was removed; the resulting blue 
formazan was solubilized in DMSO (100 µl), 
and its optical density was measured at 570 
nm by using a microplate reader (Bio-Tek 
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Synergy, US). By using serum-free growth 
medium as the blank, the viability of the cells 
was calculated by the following formula:  

(mean OD treatment [−blank])/  
(mean OD control [−blank]) × 100 

Measurement of cAMP level 
The cAMP level was analyzed in the 

current study based on the method described 
in the previous studies (Banafshe et al., 2007; 
Javadi et al., 2013). The cells were seeded in 
96-well plates at a density of 2×105 cells per 
well, and incubated at 37 °C for 24 h. After 
removing the culture medium, the cells were 
exposed to drug treatments as listed for 18 h, 
and then, were treated with 1 μM forskolin 
(FSK) for 10 min (Rhee et al., 2000). Then af-
ter washing, the cells were lysed with 0.1 M 
HCl (500 mL/well) for 15 min and centri-
fuged at 600 × g at 4 °C and their supernatant 
was collected to measure cAMP levels using 
direct cyclic AMP ELISA (Enzyme-linked 
immunosorbent assay) Kit (Aviscera Biosci-
ence, USA). 

Nitrite assay 
In order to measure the amount of nitrite 

oxide in the drug-treated cells, nitrite assay by 
Griess reaction was performed as described 
previously (Hassanipour et al., 2018; Khan et 
al., 2017). To measure the nitrite levels, 100 
μL of the supernatant of each sample was 
transferred into 96-well microplates and sul-
fanilamide solution (50 μL), and vanadium 
(10 μL) were added to each sample and incu-
bated at room temperature for 5 min. After the 
incubation, each sample was mixed with N-
(1-naphthyl) ethylenediamine (50 μL) solu-
tion (0.1 % in water), and again incubated for 
30 min under the reduced light conditions. 
Afterward, by using a microplate reader (Bio-
Tek Synergy HT, US), all the samples were 
analyzed at 540 nm at room temperature. A 
nitrite standard of 0.1 M NaNO2 in water was 
used to analyze nitrite levels for each sample. 

Western blot analysis 
In order to perform this analysis, 6-well 

microplates were used to seed the T98G cells 
at a density of 3×105 cells per well for 24 h. 
After removing the culture medium, the T98G 

cells were treated with morphine and all the 
treatments mentioned above for 18 h at effec-
tive concentrations on the basis of the cAMP 
assay. After applying the treatments, the next 
step was to prepare total protein extracts by 
using lysis buffer (Tris buffer 62.5 mM at pH 
6.8, dithiothreitol 50 Mm, bromophenol blue 
0.25 % (W/V), and glycerol 1 %). The sam-
ples were resolved on a SDS-PAGE gel 
(10 %), which were then moved onto the 
PVDF (Polyvinylidenedifluoride) membrane. 
For a period of 2 h, the PVDF membranes 
were blocked by skim milk (5 %) and incu-
bated by primary β-actin, ERK, p-ERK, and 
nNOS antibodies overnight. The blots were 
probed with β-actin as the loading control. 
The membranes were then washed with TBST 
(a mixture of Tris-buffered saline and poly-
sorbate 20) followed by the incubation with 
horse-radish peroxide (HRP)-conjugated sec-
ondary antibodies for 1 h at room tempera-
ture. A BM chemiluminescence detection sys-
tem (Roche, Germany) was used to develop 
the blots. The optical density of each band 
was quantified by using Image J (an open 
source image processing software). 

 
Statistical analysis 

In our study, one-way analysis of variance 
(ANOVA) followed by Tukey’s post-hoc test 
was applied where appropriate to analyze the 
statistical difference among various groups by 
using GraphPad Prism 7 (San Diego, CA, 
USA). Herein, the data were presented as 
mean ± SEM, and the probability (p) value of 
less than 0.05 (p< 0.05) was considered statis-
tically significant in all the experiments.  

 

RESULTS 

The effects of the treatments on cell  
proliferation  

In order to nullify the cytotoxic effect of 
the used drugs, MTT assay was conducted in 
advance. The cells were incubated with cul-
ture medium, MOR (2.5 μM), and the combi-
nation of MOR with CsA (1 nM, 10 nM, and 
100 nM), with CAIP (10 µM and 50 µM) and 
with L-NAME (0.01 mM, 0.1 mM, and 1 
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mM) for 18 h. The results of the assay indi-
cated that the studied compounds had no toxic 
effects on the T98G cells compared to the un-
treated, morphine-treated, and the vehicle-
treated cells (Figure 1). 

 
The effects of treatments on cAMP (cyclic 
adenosine monophosphate) levels 

The effect of chronic morphine on cAMP  
levels 

Herein, cAMP levels in the T98G cells 
were measured in the presence of MOR (2.5 
µM for 18 h). The cAMP levels in the T98G 
cells were indiscernible due to their instability 
in our pilot study, i.e. in both control and 
morphine-treated groups. Therefore, we stim-
ulated the cells with the application of for-
skolin (FSK; 1 µM) for 10 min before har-
vesting our cells, because FSK is used to 
study the effects of the inhibition or activation 
of cAMP (Alasbahi and Melzig, 2012). The 
results showed that FSK has significantly en-
hanced the level of cAMP in both control and 
chronic morphine-treated groups. The results 
also indicated that morphine increases the 

cAMP levels, compared to the control group 
after adding forskolin to both groups 
(*p˂0.05, Figure 2). 

The effects of CsA and CAIP on cAMP  
elevation 

To study the effect of the CsA on the 
cAMP accumulation induced by MOR, pre-
treatment of cells for 30 min with CsA (1 nM, 
10 nM, and 100 nM) was done, before treating 
them with MOR (2.5 µM for 18 h). The re-
sults showed that CsA significantly inhibited 
the FSK-stimulated cAMP concentration 
compared to the vehicle-treated group (#p< 
0.05, ## p<0.01, Figure 3a). The inhibitory ef-
fect of CsA on the morphine-induced cAMP 
overshoot is dependent on its calcineurin in-
hibitory property which was confirmed by us-
ing CAIP. To determine the mentioned effect, 
the pre-incubation of the cells with CAIP (50 
µM) for 30 min before MOR treatment signif-
icantly blocked the MOR-induced increase of 
cAMP in the T98G cells, compared to the 
morphine-treated group ($$p<0.01, Figure 
3a).  

 

Figure 1: The survival of the T98G cells was evaluated by MTT assay. None of the studied drugs exhibited any 
toxicity on the viability of the T98G cells after 18 h compared to the control, vehicle (comprised of 0.1 % DMSO 
(V/V)), and MOR. The results were presented as mean ± SEM of three independent experiments conducted in 
triplicate. CsA (Cyclosporin A); MOR (Morphine); CAIP (Calcineurin auto-inhibitory peptide); L-NAME (NG-nitro-l-
arginine methyl ester) 
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Figure 2: Prolonged effect of MOR on cAMP levels with 
and without forskolin. The MOR (2.5 µM for 18 h) treat-
ment up-regulated cAMP (about 1.7 folds) in the T98G 
cells. All the data were expressed as mean ± SEM of 
three experiments conducted in duplicate. *p˂0.05 as 
compared to control+FSK 

 

The effect of L-NAME on cAMP elevation 
In order to examine the possible correla-

tions between the cAMP levels induced by the 
chronic morphine exposure and the activity of 
NOS enzyme in the cells, L-NAME (0.1 mM) 
was used which significantly inhibited the 
MOR-induced (2.5 µM for 18 h) increase in 
the cAMP levels (@p<0.05, Figure 3b). 
 
The effects of treatments on nitrite levels 

The effect of chronic morphine on nitrite  
levels 

In order to analyze the effect of chronic 
morphine (2.5 μM for 18 h) exposure on the 
NOS (nitric oxide synthase) activity and NO 
(nitric oxide) level, the T98G cells were 
treated with and without morphine. The re-
sults showed that morphine significantly in-
creased the nitrite formation in the cells as 
compared to the control (***p<0.001, 1.7 
folds, Figure 4a).  

The effects of CsA and CAIP on nitrite levels 
Pre-treatment of the cells for 30 min with 

CsA (1 nM, 10 nM, and 100 nM) before treat-
ing them with chronic MOR, significantly di-
minished the effects of morphine on the nitrite 

production as compared to the vehicle-treated 
group (#p<0.05, ##p<0.01 and ###p<0.001, 
Figure 4a). Similar results were observed 
when the cells were pretreated for 30 min with 
CAIP (50 µM) before adding chronic MOR to 
the T98G cells ($$ p<0.01, Figure 4a). 

 

 
Figure 3: Measurement of cAMP levels (µM). a: Pre-
treatment with CsA (1 nM, 10 nM, and 100 nM) and 
CAIP (50 µM) inhibited the FSK-stimulated cAMP in 
MOR-treated cells. b: Pretreatment of cells with L-
NAME (0.1 Mm) significantly reduced the FSK-medi-
ated cAMP concentration as compared to the MOR-
treated cells. Concentrations of cAMP were determined 
by ELISA kit, and the data were presented as a percent-
age of FSK-stimulated cAMP. All the data were pre-
sented as mean ± SEM of three experiments conducted 
in duplicate. Multiple comparisons among groups were 
performed by one-way analysis of variance (ANOVA), 
followed by Tukey’s post-hoc test. #p< 0.05 and ## 
p<0.01 versus the vehicle-treated group and $$p<0.01, 
@p<0.05 versus the morphine-treated group. The vehi-
cle was comprised of 0.1 % DMSO (v/v) and MOR. 
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The effect of L-NAME on nitrite levels 
In this study, the morphine-induced stim-

ulation of the NO formation was significantly 
inhibited by the pretreatment of the cells with 
L-NAME (0.1 mM and 1 mM) for 30 min be-
fore chronic morphine incubation (2.5 µM for 
18 h) in the T98G cells (@@p<0.01, Figure 
4b) 

 

 
Figure 4: Measurement of nitrite levels (µM). a: Nitrite 
levels (µM) significantly increased after morphine treat-
ment (2.5 µM for 18 h) as compared to the control. Pre-
treatment with CsA (1 nM, 10 nM, and 100 nM) and 
CAIP (50 µM) significantly inhibited nitrite production in-
duced by MOR. b: Pretreatment with L-NAME (0.1 mM 
and 1 mM) significantly inhibited the nitrite production 
induced by MOR. All data were presented as mean ± 
SEM of three experiments conducted in triplicate. Mul-
tiple comparisons among the groups were performed by 
one-way analysis of variance (ANOVA) followed by 
Tukey’s post-hoc test. ***p<0.001 versus control group, 
#p< 0.05, ## p<0.01 and ###p<0.001 versus vehicle-
treated group, $$p<0.01, @@p<0.01 versus morphine-
treated group. The vehicle was comprised of 0.1 % 
DMSO (v/v) and MOR. 
 
 

Cyclosporin A modifying ERK1/2 
(Extracellular Signal-Regulated Kinases) 
pathway in the T98G cells 

The effect of chronic morphine on the  
phosphorylation of ERK1/2 

The extracellular signal-regulated kinase 
(ERK) signaling is involved in developing 
morphine tolerance (Berta et al., 2013). In our 
study, we observed that the chronic exposure 
of morphine increased the phosphorylation 
of ERK after incubation of the T98G cells 
with morphine (2.5 µM) for 18 h as shown in 
Figure 5 (##p<0.01). 

The effects of CsA, CAIP, and L-NAME on 
the phosphorylation of ERK1/2 

The Western blot analysis for β-actin, 
ERK, and p-ERK proteins was performed by 
using their specific antibodies as shown in 
Figure 5. For this purpose, the cells were pre-
incubated for 30 min with CsA (1 nM, 10 nM, 
and 100 nM) before MOR treatment. The 
chronic morphine-mediated phosphoryla-
tion of ERK1/2 was significantly inhibited by 
CsA (***p<0.001, **p<0.01). The similar re-
sults were observed with the pretreatment of 
cells for 30 min with CAIP (50 µM) and L-
NAME (0.1 mM) before MOR treatment 
(**p<0.01).  

 
Cyclosporin A modifying nNOS (Neuronal 
Nitric Oxide Synthase) protein expression 
in the T98G cells 

The effect of chronic morphine on the 
expression of nNOS protein 

The expression of nNOS protein was up-
regulated after exposing the cells to morphine 
(2.5 µM for 18 h) (##p<0.01, Figure 6), which 
suggests that nNOS protein expression might 
be involved in the development of the mor-
phine tolerance in the T98G cells. 

The effects of CsA, CAIP, and L-NAME on 
the expression of nNOS protein 

The results of the current study have al-
ready shown that the pretreatment of cells 
with CsA inhibited the formation of chronic 
morphine-induced NO (Figure 4a). Western 
blot analysis was conducted to indicate 
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whether the effect of CsA was at least par-
tially mediated through modifying the expres-
sion of nNOS. The cells were pretreated for 
30 min with CsA (1 nM, 10 nM, and 100 nM) 
prior to morphine treatment (2.5 µM for 18 h). 
As shown in Figure 6, the CsA significantly 
inhibited the morphine-mediated nNOS ex-
pression in the T98G cells (**p<0.01). Simi-
lar results were observed with the pretreat-
ment of cells with CAIP (50 µM) and L-
NAME (0.1 mM), which indicated that the 
specific inhibition of calcineurin and the inhi-
bition of NOS can alter morphine tolerance in 
the T98G cells by down-regulating nNOS 
protein expression (*p<0.05,**p<0.01). 

 
DISCUSSION 

The current study demonstrated that CsA 
attenuates MOR-induced tolerance through 

extracellular signal-regulated kinases (ERK) 
pathway, which is likely a result of the signif-
icant decrease of nitric oxide (NO) synthesis 
in morphine-dependent T98G cells. 

A state of adaptation in which the effect 
of the drug is diminished with the passage of 
time due to prolonged exposure is defined as 
tolerance (Taylor and Fleming, 2001). It is 
very obvious that morphine is the best thera-
peutic choice for severe pain (Ballantyne and 
Mao, 2003); numerous clinical and preclinical 
investigations have revealed that tolerance to 
the anti-nociceptive effects of morphine is the 
main concern which limits its clinical use 
(Bekhit, 2010; Pajohanfar et al., 2017). Stud-
ies have reported that calcineurin also plays a 
role in the neuronal adaptations mediated by 
MOR (Biala et al., 2005). Furthermore, the 
activation of calcineurin by morphine has al-
ready been reported (Kam et al., 2010). 

 

Figure 5: The effect of CsA on phosphorylation of ERK: The representative immunoblots for p-ERK1/2, ERK1/2, 
and β-actin are presented, in which the band intensity of p-ERK was normalized as compared to ERK1/2. The 
densitometric analysis of the immunoblot was conducted by using Image J software and the results were presented 
as a percentage of control. The results showed that chronic MOR (2.5 µM for 18 h) induced phosphorylation of 
ERK1/2 in the T98G cells, while the pretreatment of cells with CsA (1 nM, 10 nM, and 100 nM), CAIP (50 µM), and 
L-NAME (0.1mM) suppressed the stimulatory effect of chronic MOR treatment on phosphorylation of ERK1/2. All 
the data were presented as mean ± SEM of three experiments, conducted in duplicate. Multiple comparisons among 
groups were performed by one-way analysis of variance (ANOVA), followed by Tukey’s post-hoc test. ##p<0.01 in 
comparison to the control, ***p<0.001, **p<0.01 in comparison to MOR. 
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Figure 6: The effect of CsA on the protein expression of nNOS: The representative immunoblots for nNOS and β-
actin are shown in the figure, and densitometric analysis of the immunoblot was conducted by using Image J soft-
ware and the results were presented as a percentage of the control. The expression of nNOS was enhanced in the 
T98G cells exposed to chronic MOR (2.5 µM for 18 h), while pretreatment of cells with CsA (1 nM, 10 nM, and 100 
nM), CAIP (50 µM), and L-NAME (0.1 mM) suppressed the stimulatory effect of chronic MOR treatment on nNOS 
protein expression. All data were presented as mean ± SEM of three experiments conducted in duplicate. Multiple 
comparisons among groups were performed by one-way analysis of variance (ANOVA), followed by Tukey’s post-
hoc test. ##p<0.01 in comparison to the control, **p<0.01, *p<0.05 in comparison to MOR. 

 

 

Cyclosporin A which was initially iso-
lated from fungi, is a powerful immunosup-
pressant (Smith, 2017). To exert this effect, it 
inhibits two forms of cytoplasmic targets, in-
cluding calcium/calmodulin-dependent pro-
tein serine/threonine phosphatase which is 
called calcineurin, and peptidyl-prolylcis-
trans-isomerase (PPIase) (Terada et al. 2003). 
Thus, by binding itself to immunphilins, 
which are protein receptors of CsA, Cyclo-
sporin A inhibits the phosphatase activity of 
CaN (Matsuda and Koyasu, 2000). Interest-
ingly, it has been shown that these immuno-
philins are fifty folds more prevalent in the 
central nervous system (CNS) as compared to 
the immunity system (Steiner et al., 1992). 
They are called neuroimmunophilins and me-
diate neuronal activity (Gold, 2000). 
Dougherty et al.  reported for the first time in 

1988 that opioid-induced dependence was at-
tenuated by CsA (Dougherty et al., 1988). 
Furthermore, CsA attenuated the morphine-
induced place conditioning (Langroudi et al., 
2005), and also, the development and expres-
sion of the tolerance and dependence 
(Homayoun et al., 2002a) by inhibiting NO 
production. Moreover, it has been reported 
that the neural effects of immunophilin lig-
ands are considerable for the inhibition of 
morphine-induced tolerance besides their im-
munologic actions (Mehr et al., 2003).  

The adenylyl cyclase (AC), enzyme 
catalyzes the formation of cAMP and modi-
fications in cAMP signaling, play a crucial 
role in the development of morphine tolerance 
(Christie, 2008; Nestler, 2004). An increased 
level of cAMP can be considered as a major 
mechanism in causing morphine tolerance as 
described by many researchers in their in 
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vitro studies, including EcR293 cell line 
(Zhao et al., 2006), HEK 293 cell line (Tso 
and Wong, 2001), CHO cell line (Yue et al., 
2006), and human neuroblastoma SK-N-SH 
cell line (Jamil et al. 2013). The AC isoen-
zyme shows its sensitization for different 
kinds of stimulators, like forskolin (FSK) 
through its binding with Raf-1 (Ding et al., 
2004). Due to the same reason, in the current 
study, we added FSK to the cells and ob-
served that chronic MOR induced an increase 
in cAMP levels in the T98G cells (Figure 2). 
It has been previously reported that CsA can 
attenuate the development of cannabinoid-in-
duced up-regulation of cAMP in human astro-
cytoma cells (Banafshe et al., 2007), and in 
cultured neurons of the hippocampus (Chan et 
al., 2005). In this study, the possible involve-
ment of CsA on the modulation of morphine 
tolerance was determined through its effect on 
the cAMP levels, due to the fact that CsA sig-
nificantly attenuated the chronic MOR-in-
duced cAMP levels in the T98G cells (Figure 
3).  

Nitric oxide (NO) is one of the main me-
diators involved in the adaptations to chronic 
morphine-induced tolerance as the inhibition 
of nitric oxide synthase (NOS) activity results 
in the attenuation of morphine-induced toler-
ance (Hassanipour et al., 2018; Heinzen and 
Pollack, 2004; Naidu et al., 2003; Ragha-
vendra et al., 2000). In one study, thalidomide 
treatment reversed morphine tolerance by de-
creasing NOS and nitric oxide pathway in 
T98G cells (Khan et al., 2017). In the present 
study, NO levels were significantly increased 
in the morphine-treated group. CsA inhibits 
NO synthesis in glioma C6 cell line (Traj-
ković et al., 1999). Moreover, this effect of 
the CsA on the nitrite production, is mediated 
through the inhibition of CaN, because CaN 
dephosphorylates NOS and up-regulates its 
activity (Kaminska et al., 2004). In contrast, 
CsA increases NOS phosphorylation and in-
hibits its enzyme activity (Dawson et al., 
1993). The results of the present study 
showed that CsA significantly reversed the ef-

fect of morphine-induced tolerance by de-
creasing the levels of NO in the T98G cells 
(Figure 4).  

Previous studies have reported that a sub-
family of mitogen-activated protein kinases 
(MAPK) is extracellular signal-regulated pro-
tein kinases (ERK) which is involved in mor-
phine tolerance (Hawes et al., 2008; Macey et 
al., 2009; Polakiewicz et al., 1998). In some 
studies, MOR mediated the phosphorylation 
of MAPK in dorsal root ganglion neurons 
(Ma et al., 2001) and ERK (Chen et al., 2008). 
Furthermore, some other studies concluded 
that the expression of p-ERK was increased 
by MOR in cultured astrocytes (Berta et al., 
2013), and in the primary culture of striatal 
neurons (Macey et al., 2006). The MOR-
induced tolerance could be attenuated by 
ERK inhibitors (Wang et al., 2009). Moreo-
ver, morphine tolerance could be reduced by 
miR-365 by inhibiting ERK signaling path-
way (Wu et al., 2018). In the current study, 
the exposure of T98G cells to chronic mor-
phine significantly up-regulated the phos-
phorylation of ERK1/2 as compared to the 
control. It has been reported that in rat glo-
merular mesangial cells (MC), CsA attenu-
ated the cytokine-mediated phosphorylation 
of ERK and JNK (Doller et al., 2007) and re-
versed the phosphorylation of ERK1/2 in anti-
IgM-activated Daudi B-cells by diverting Raf 
from the MAPK pathway (Gary-Gouy et al., 
2006). However, previous studies reported 
that CaN led to calcium-mediated activation 
and phosphorylation of MAPK and ERK 
(Dougherty et al., 2009; Molkentin, 2004), 
and this CaN-dependent activation of ERK1/2 
was blocked by CsA in cultured cardiomyo-
cytes (Zou et al., 2001). Our study demon-
strated that morphine-induced phosphoryla-
tion of ERK1/2 was significantly reversed by 
treating the cells with CsA (Figure 5).  

In response to physiological stimulation, 
NO is released by neuronal NOS (nNOS) 
which is a calcium/calmodulin-dependent en-
zyme (Larson et al., 2000). The effect of mor-
phine tolerance on NO production could be 
linked to nNOS. Therefore, nNOS has a dy-
namic role in regulating the expression of 
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morphine-induced tolerance (Heinzen and 
Pollack, 2004; Machelska et al., 1997; Wong 
et al., 2000). It was shown that in spinal mi-
croglial cells, the inhibition of nNOS modu-
lated the morphine tolerance (Liu et al., 
2006). The results of our study revealed that 
the chronic treatment of cells with morphine 
significantly increased the expression of 
nNOS. CsA inhibits CaN and causes NOS 
phosphorylation (Snyder et al., 1998). There-
fore, nNOS is inhibited through phosphoryla-
tion, and CaN reverses this effect by 
dephosphorylation of NOS (Morioka et al., 
1999). Through CaN inhibition, CsA is able 
to diminish the catalytic activity of nNOS, 
which in turn inhibits the release of NO (Mehr 
et al., 2003; Rao et al., 1996; Sabatini et al., 
1997). On the other hand, in spinal cord in-
jury, the nNOS-mediated NO production is 
attenuated by CsA as a result of the inhibition 
of the activity and the expression of nNOS 
(Diaz-Ruiz et al., 2005). The treatment of 
cells with CsA significantly decreased the ex-
pression of nNOS as compared to morphine-
treated cells (Figure 6). 

The ERK signaling is modulated by NO 
in a way that it controls the activation and 
phosphorylation of ERK as studied in neuron-
derived cell lines (Meini et al., 2006) and in 
retinal and glial cells (Socodato et al., 2009). 
Another research evaluated the role of nNOS 
on the activation of ERK due to the high dose 
of morphine treatment (Komatsu et al., 2007), 
while the ERK inhibitor attenuated the ex-
pression of nNOS induced by the ERK acti-
vation in morphine withdrawal (Cao et al., 
2006). By considering that Ras-ERK cascade 
is needed for nNOS induction (Schonhoff et 
al., 2001), the possible interaction of 
CaMK11 and nNOS through the activation of 
ERK was studied which increased NO by 
chronic morphine tolerance in harvested dor-
sal root ganglion (Wang et al., 2011). The re-
sults of the present study reinforce the hy-
pothesis that NO is significantly decreased by 
CsA, and that this decrease probably down-
regulates the chronic morphine-induced phos-
phorylation of ERK1/2. Our hypothesis was 
further confirmed when we observed that 

nNOS protein expression was up-regulated by 
the phosphorylation of ERK1/2 in the mor-
phine-dependent cells, and was down-
regulated by CsA, which in turn suppressed 
the formation of the morphine-induced NO 
through a feedback mechanism (Figure 7). 

 

 
Figure 7: The role of CsA in the attenuation of mor-
phine tolerance. ERK (Extracellular signal-regulated ki-
nases); p-ERK (Phosphorylated ERK); L-NAME (NG-
nitro-l-arginine methyl ester); nNOS (Neuronal nitric ox-
ide synthase); MAPK (Mitogen-activated protein ki-
nase) 

 
 

In conclusion, the findings of the present 
study clearly demonstrated that cyclosporin A 
attenuated morphine-induced tolerance in the 
T98G cells, through the significant reduction 
of the levels of cAMP and by acting through 
NO/ERK signaling pathway. These findings 
suggest a novel approach in the treatment of 
morphine tolerance, and provide better thera-
peutic options for the clinical use. The results 
of the present study are significant from many 
aspects. However, further analyses are re-
quired to evaluate and confirm the underlying 
mechanisms with regard to the role of Cyclo-
sporin A in morphine tolerance. 
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