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ABSTRACT 
 

Researchers believe that recognition of functional impairment in some of brain networks such as frontal-parietal, 
default mode network (DMN), anterior medial prefrontal cortex (MPFC) and striatal structures could be a benefi-
cial biomarker for diagnosis of obsessive-compulsive disorder (OCD). Although it is well recognized brain func-
tional connectome in OCD patients shows changes, debate still remains on characteristics of the changes. In this 
regard, little has been done so far to statistically assess the altered pattern using whole brain electroencephalog-
raphy. In this study, resting state EEG data of 39 outpatients with OCD and 19 healthy controls (HC) were rec-
orded. After, brain functional network was estimated from the cleaned EEG data using the weighted phase lag 
index algorithm. Output matrices of OCD group and HCs were then statistically compared to represent meaningful 
differences. Significant differences in functional connectivity pattern were demonstrated in several regions. As 
expected the most significant changes were observed in frontal cortex, more significant in frontal-temporal con-
nections (between F3 and F7, and T5 regions). These results in OCD patients are consistent with previous studies 
and confirm the role of frontal and temporal brain regions in OCD. 
 
Keywords: Electroencephalography (EEG), Obsessive-compulsive disorder (OCD), functional connectivity (FC), 
weighted phase lag index (WPLI) 
 
 
 

INTRODUCTION 

Obsessive–compulsive disorder (OCD) is 
a neuropsychiatric disorder with a lifetime oc-
currence of 2–3 % (Horwath and Weissman, 

2000). OCD is a common mental illness char-
acterized by the obsessions and/or compul-
sions. Obsessions are unwanted, intrusive and 
recurrent thoughts that are frequently re-
peated and usually person attempts to relieve 



EXCLI Journal 2018;17:1090-1100 – ISSN 1611-2156 
Received: September 26, 2018, accepted: October 31, 2018, published: November 08, 2018 

 

 

1091 

the distress of disturbing thoughts by repeated 
behaviors and/or repetitive mental acts in or-
der to reduce or prevent anxiety and some 
dreaded conditions or events (compulsions) 
(American Psychiatric Association, 2013).  

The notable symptoms of OCD are not al-
ways described by the abnormal behaviors; 
instead, it can also contain deficits in cogni-
tive functions including delayed response in-
hibition, impaired attentional set shifting, 
planning, decision-making (Abramovitch et 
al., 2013; Yazdi-Ravandi et al., 2018), visual-
spatial skills, and speed of information pro-
cessing (Greisberg and McKay, 2003; Keefe, 
1995; Kuelz et al., 2004; Rao et al., 2008; 
Shin et al., 2008). Moreover, studies over the 
past two decades have shown that the brain 
structural and functional changes in OCD are 
associated with patients abnormal behavior 
and cognitive dysfunction (Benzina et al., 
2016; Friedlander and Desrocher, 2006; 
Lewin et al., 2014; Radmanesh et al., 2008; 
Zhuo et al., 2017). For instance, decreased 
volume of caudate nucleus (Parmar and 
Sarkar, 2016; Robinson et al., 1995), Globus 
pallidus, putamen and striatal region (Ferrari 
et al., 2008) and overall cortex size have been 
reported in OCD patients as compared to 
healthy controls (Bedard et al., 2009; Szeszko 
et al., 1999). In addition, recent neurobiologi-
cal studies of OCD recommend that the clini-
cal symptoms and cognitive functions such as 
executive functions (Burguiere et al., 2015), 
working memory (Li and Mody, 2016), inhib-
itory control, (Ham et al., 2013) of OCD indi-
viduals are associated with dysfunction in the 
cortico–striato–thalamo–cortical circuitry. 
The dysfunctions of cortico–striato–thalamo–
cortical circuitry are mainly observed at the 
orbitofrontal cortex (OFC), dorsolateral pre-
frontal cortex, and caudate nucleus (Alexan-
der et al., 1986; Groenewegen and Uylings, 
2000; Rotge et al., 2009; Saxena and Rauch, 
2000). It is supposed that this circuit is explic-
itly linked to the executive cognitive func-
tions (Cavedini et al., 2006).  

Alteration of frontal cortex connections to 
basal ganglia (Strobel et al., 2007), and stria-
tum (Melloni et al., 2012; Nakao et al., 2014; 

Arnsten and Casey, 2011; Robbins et al., 
2012) have also been reported in the OCD 
which present a hyperactivity in the limbic 
system and the associated cortical regions 
(Chamberlain et al., 2008). These functional 
changes also associate with behavioral and 
cognitive deficits in OCD. For instance, hy-
peractivity of frontal cortex is negatively cor-
related with neuropsychological model of the 
disorder (Ruchsow et al., 2007) which is in-
terpreted as a sign of disrupted inhibitory pro-
cess (Adler et al., 2000) and decision making 
(Noël et al., 2006). In addition, alteration of 
connection between cortical regions and sub-
cortical regions such as striatum and thalamus 
could also influence diverse computational 
activities, including reward processing, habit 
formation, motor control and action selection 
(Arnsten and Casey, 2011; Robbins et al., 
2012) which are observed in OCD.  

Although alterations of brain functions in 
OCD have been investigated using various 
neuroimaging modalities, relatively less is 
known about using the electroencephalog-
raphy technique (Ortigue et al., 2009). Previ-
ous EEG studies have shown a decreased beta 
and an increased theta oscillation in OCD pa-
tients mainly at the frontal and the fronto-tem-
poral regions (Prichep et al., 1993; Locatelli 
et al., 1996; Bucci et al., 2004). In addition, 
changes in frontal asymmetry at lower alpha 
band (Wiedemann et al., 1999; Ischebeck et 
al., 2014), lower EEG complexities at the pre-
frontal and the fronto-temporal regions have 
also been reported (Aydin et al., 2015). More-
over, functional communication between sev-
eral brain regions entitled as functional net-
work are also disrupted (Desarkar et al., 2007; 
Velikova et al., 2010). The functional net-
works could be investigated using various 
techniques including coherence (Velikova et 
al., 2010), partial cross correlation (Jalili and 
Knyazeva, 2011), mutual information (Aydin 
et al., 2015) and phase lag index (Stam et al., 
2007; Vinck et al., 2011). In this study, we hy-
pothesized that alteration of functional con-
nectivity pattern in OCD occurs in a fre-
quency specific manner. Our aim was to in-
vestigate the potential of using this pattern as 
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a biomarker in clinical applications. How-
ever, functional connectivity index measured 
by EEG signal is very sensitive to noise. 
Therefore, the most test-retest reliable 
method, weighted phase lag index (WPLI), 
was chosen to estimate the functional connec-
tivity pattern. The WPLI is an extension of 
phase lag index that calculate a measure of 
phase synchrony between two signals consid-
ering a consistent lag between their phases. It 
has been shown that the WPLI is less sensitive 
to zero-lag phase-relations that could be 
caused by volume conduction effects (Hard-
meier et al., 2014; Ortiz et al., 2012). Using 
the WPLI, the significant altered connections 
and the altered frequency bands were exam-
ined which are described in the following sec-
tions.  

 

MATERIALS AND METHODS 

Participants 
The current study was conducted in psy-

chiatric ward of the Farshchian (Sina) hospital 
of Hamadan city in 2016. Thirty-nine patients 
(25 female, age: 34.76±10.35 years) meeting 
DSM-IV-TR criteria for OCD and 19 healthy 
controls (11 female, age: 31.94 ± 8.22 years) 
who matched with OCD group were re-
cruited. The study was reviewed and ap-
proved by the local ethical committee of the 
Hamadan University of Medical Sciences. An 
informed written consent was obtained from 
each subject prior to participation in the study. 
All patients were taking selective serotonin 
reuptake inhibitors (SSRIs). Patients with fol-
lowing criteria were included in this study: a) 
OCD diagnosis by a psychiatrist according to 
the DSM-IV-TR criteria and based on struc-
tured clinical interview, b) an age range be-
tween 18 and 60 years, and c) at least score of 
16 on the Yale-Brown obsessive-compulsive 
scale (Y-BOCS). In addition, the following 
exclusion criteria was also considered: a) any 
current psychiatric disorder other than OCD 
diagnosed, b) history of drug and/or alcohol 
abuse or dependency, C) any serious concom-
itant general medical condition or neurologic 

disease, d) history of  serious head injury e) 
intellectual disability, f) electroconvulsive 
therapy in the last year, g) physical disability 
(e.g. blindness, deaf, speech problems, paral-
ysis and amputation), h) pregnancy and any 
clinical conditions that could significantly af-
fect the EEG. In addition, healthy subject with 
life time and current of clinical psychiatric 
disorders were excluded from the study. Ta-
ble 1 presents some important statistical infor-
mation about the two groups involved in this 
study. The gender, handedness and age were 
not significantly different between the groups, 
therefore, their impacts on the final outcome 
was ignored. Demographic and clinical infor-
mation was obtained from a semi-structured 
interview. OCD severity was also assessed 
using the Yale-Brown Obsessive-Compulsive 
Scale (YBOCS) (Goodman et al., 1989).  

 
Neurophysiological data 

The EEG data acquisition was carried out 
between 9 and 11 a. m. on the Farshchian Sina 
hospital of Hamadan city using a Cadwell 
Easy II Amplifier with 19 Ag/AgCl surface 
electrodes including FP1, F3, F7, C3, T3, T5, 
P3, O1, Fz, Cz, Pz, FP2, F4, F8, C4, T4, T6, 
P4 and O2. The electrodes were placed on the 
scalp according to the 10-20 international sys-
tem via Electro-Caps (Electro-Cap Interna-
tional, Inc.) with Cz as the reference elec-
trode. The electrode impedance was smaller 
than 5 kΩ throughout the session. The EEG 
data was recorded in eyes-open resting state 
with a sampling rate of 200 Hz. The experi-
mental design is shown in Figure 1.  
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Table 1: Demographic characteristics of the participants in this study 

Groups 
OCD 

(n = 39) 
HC 
(n = 19) 

Statistical analysis 
Characteris-
tics 

t-test 
P-
value 

95 % 
CI 

Gender (M/F) 14 / 25 8 / 11 -0.450 0.654 
-0.338 
to 
0.214 

Handedness 
(R/L) 

36 / 3 18 / 1 0.337 0.737 
-0.120 
to 
0.169 

Age (years) 34.76 ± 10.35 
31.94 ± 
8.22 

1.037 0.304 
-2.627 
to 
8.271 

Medication at 
time of study, 
n (%),  range 
dose 

Medication n (%) range dose 

    

Sertraline 
Citalopram 
Escitalopram 
Fluoxetine 
Fluvoxamine 
Paroxetine 

21 (53.8) 
7 (17.9) 
5 (12.9) 
3 (7.70) 
2 (5.1) 
1 (2.6) 

50-150 
20-60 
10-20 
20-80 
50-200 
20-60 

Y-BOCS 

Obsession 
Compul-

sion 
Total 

Scores 
--- --- --- --- 

11.89 ± 2.47 
Max = 17.00 
Min = 8.00 

10.41 ± 
3.01 

Max = 
18.00 
Min = 
6.00 

22.30 ± 
5.11 

Max = 
34.00 

Min = 16.00

--- --- --- --- 

Abbreviations: OCD - Obsessive compulsive disorder, HC - Healthy control, CI - Confidence interval, Y-BOCS -Yale-Brown ob-
sessive compulsive scale, M – Male, F – female, R – Right and L – Left 

 

 

 

Figure 1: Experimental design 
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The acquired EEG signals were then 
band-pass filtered between 1-40 Hz using a 
basic FIR filter with a zero phase shift. Then, 
the filtered data was segmented to trials of 3 
seconds. Subsequently, artifacts were re-
moved using the independent component 
analysis followed by a visual inspection. The 
channels diagnosed as bad using the kurtosis 
measure were interpolated.  Then, the re-ref-
erenced EEG data to average channels were 
used to estimate the brain functional connec-
tivity network. Since the brain works in a fre-
quency specific manner, the functional con-
nectivity were calculated for each of the con-
ventional frequency bands separately, the im-
plied frequency bands including delta (1–4 
Hz), theta (4–8 Hz), alpha I (8–10 Hz), alpha 
II (10–12 Hz), beta I (12–15 Hz), beta II (15–
18 Hz), beta III (18–25 Hz), beta IV (25–30 
Hz) and lower gamma band (30–40 Hz). The 
process of EEG data was entirely performed 
in MATLAB R2016a (The MathWorks Inc., 
Natrick, USA) using the EEGLAB v13.6.5b 
toolbox. 

The functional connectivity could be esti-
mated using various approaches such as co-
herence (Nunez et al., 1997; Srinivasan et al., 
2007), partial correlation (Zhou et al., 2009; 
Jalili and Knyazeva, 2011; Wang et al., 2016), 
mutual information (Aydin et al., 2015) and 
phase lag index (Stam et al., 2007; Vinck et 
al., 2011). In this study, the WPLI was im-
plied to identify interdependencies and inter-
action between time series of each pairs of 
electrodes. The WPLI has better test-retest re-
liability as compared to other functional con-
nectivity measures (Hardmeier et al., 2014). 

 
Weighted Phase Lag Index 

In the first stage, Fourier transform of two 
real-valued signals x(t) and y(t) are computed 
and labeled as X(f) and Y(f). Then, X and Y 
are used to compute the complex cross-spec-
trum 

C(f) = X(f)Y*(f) of two signals,  

where Y* represents the complex conju-
gate of Y. Subsequently, the complex non-di-
agonal part of C is considered as Z to focus on 
a particular frequency of interest f.  

Then, PLI is calculated by taking absolute 
value of the sign of the imaginary part of Z: 
PLI ≡ | E[sign(Im(Z))] |.  

In fact, uncorrelated noise sources will 
motive an increase of signal power and 
weighting of cross spectrum limits the influ-
ence of cross-spectrum elements around the 
real axes. The real axes have a higher proba-
bility of risk in changing their “true” sign with 
small noise disorderliness. Therefore, the 
WPLI that was proposed by Martin Vinck and 
colleagues (2011) is calculated by weighting 
the cross-spectrum according to the magni-
tude of the imaginary component and would 
be more robustness to noise as compared to 
the PLI, coherence, and imaginary coherence 
(Ortiz et al., 2012). 

 
Statistical analysis 

In the final stage, group differences in 
functional connectivity between OCD pa-
tients and HCs were statistically evaluated. 
Statistical comparisons were performed using 
a non-parametric permutation t-test. The nor-
mality assumption for the functional connec-
tivity was checked using the Kolmogorov–
Smirnov test. Then, a two-tailed paired t-test 
was applied to identify the significant changes 
of functional connectivity in OCDs as com-
pared to HCs. A threshold of p<0.05 (Fisher 
permutation) was considered and the results 
were corrected for the multiple comparisons 
error using the Bonferroni method.  

 
RESULTS 

Subsequently, the brain functional con-
nectivity changes in OCDs as compared to 
HCs were statistically identified in 9 fre-
quency bands. Figure 2 and Table 2 present 
the most significant differences in functional 
connectivity between OCD and HC groups. 

The functional connectivity matrices pre-
sented in Figure 2 have been rearranged to left 
and right part based on their channel locations 
at the left or right hemisphere relative to the 
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central line. The results clearly present signif-
icant changes in functional connectivity be-
tween the frontal regions and other areas of 
the brain. Interestingly, these results were ob-
served in a similar manner in all frequency 
bands (Table 2). 

Based on the above mentioned results 
(Figure 2, Table 2), it is obvious that connec-
tions between frontal areas and other brain re-
gions, mainly temporal and occipital regions, 
are significantly altered in OCD patients. 
These alterations are frequency specific and 

mainly show decrement in synchronous acti-
vations of frontal, temporal and occipital re-
gions. Nevertheless, increase of synchrony 
activities are also observed between oscilla-
tory activations of the left frontal and the left 
temporal regions at the alpha and the beta 
bands. On the other hand, the most significant 
changes are observed at the frontal-temporal 
connections in very high beta band (Figure 2-
H). 

 
 

 

 
Figure 2: Functional connectivity differences between OCD group versus healthy individuals in various 
frequency band including A. Delta (1–4 Hz), B. Theta (4–8 Hz), C. Alpha I (8–10 Hz), D. Alpha II (10–
12 Hz), E. Beta I (12–15 Hz), F. Beta II (15–18 Hz), G. Beta III (18–25 Hz), H. Beta IV (25–30 Hz) and 
I. Gamma (30–40 Hz). The color bars present the range of T value changes in each comparison. The 
hot colors indicate that the average WPLI of OCD group is higher than healthy controls, and the cold 
colors present a lower average of WPLI measures in the OCD group. The results have been masked 
with binary mask of their related p values and elements of the mask matrix with p values bigger than 
0.05 have been marked as zero and p values lower than 0.05 have been marked as one. 
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Table 2: Significant changes in the brain functional network of the OCD individuals as compared to 
healthy controls 

Statistical comparison Functional connection Frequency band 
P value T value   
0.0283 -2.286 F4-FP1 

Delta 
[1-4 Hz] 

0.0071 -2.812 F7-C3 
0.0337 2.195 Fz-C3 
0.0146 -2.537 F7-FP1 

Theta 
[4-8 Hz] 

0.0043 -3.060 F7-T4 
0.0499 -2.021 F7-T5 
0.0031 -3.139 F3-T6 Alpha I 

[8-10 Hz] 0.0227 2.382 Fz-T5 
0.0266 -2.314 F8-T4 Alpha II 

[10-12 Hz] 
0.0489 2.034 F7-FP1 

Beta I 
[12-15 Hz] 

0.0224 -2.371 F7-C4 
0.0314 -2.233 F7-F8 
0.0163 2.509 F7-T5 
0.0004 -3.809 F8-F3 

Beta II 
[15-18 Hz] 

0.0142 -2.573 F8-T3 
0.0257 -2.318 F8-Fz 
0.0242 -2.366 F3-O2 

Beta III 
[18-25 Hz] 

0.0362 -2.176 F3-T6 
0.0171 -2.489 FP2-T3 
0.0325 2.224 F7-T3 
0.0257 -2.343 F4-O2 
0.0369 -2.169 Fz-O2 
0.0417 2.107 Fz-C3 
0.0016 3.358 F3-T5 Beta IV 

[25-30 Hz] 0.0004 3.814 F7-T5 
0.0107 2.67 F8-T4 

Gamma 
[30-40 Hz] 

0.0022 -3.237 F3-FP1 
0.0226 2.371 F3-F4 
0.031 -2.226 F3-FP2 
0.0475 2.044 F3-Fz 
0.0252 -2.321 F3-O1 

Abbreviations: F - Frontal, T - Temporal, C – Central, P – Parietal, O – Occipital, *: P-value < 0.05 (FWE corrected)  
 
 
 

DISCUSSION 

In this study significant differences were 
observed at several connections; mainly at the 
connections between frontal and temporal re-
gions (F3-T5 and F7-T5). These results in 
OCD patients are consistent with previous 
studies and confirm the role of frontal and 
temporal brain regions in the obsessive com-
pulsive disorder. In addition, comparison of 
functional connectome in OCDs and HCs was 
performed in a frequency-band specific man-
ner. Nine frequency bands explained in the re-

sults section were included. Interestingly, sig-
nificant changes were observed in all the fre-
quency bands. The altered functional connec-
tivity was distributed widely in the whole 
brain network. The most significant changes 
were observed at the very high Beta fre-
quency band. These results demonstrate that 
OCD influences the whole brain network and 
is not locally constrained. Nevertheless, con-
tribution of the fronto-temporal network at the 
very high Beta frequencies seems more rele-
vant to OCD.  
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The severity of functional connectivity 
changes between frontal and temporal regions 
at very high beta band denotes that there 
should be an association between the OCD 
symptoms and abnormalities in the mentioned 
regions. Notably, we also observed an in-
creased power spectrum of EEG at the frontal 
region at the same frequency in the OCD 
group as compared to HCs. The high signifi-
cance level of the results highlights the poten-
tial of using neuromarkers beside the behav-
ioral markers to understand the OCD better 
and achieve to a specific and personalized 
treatment subsequently. Therefore, we will 
discuss the association between the altered 
behavioral and cognitive processes in the 
OCD and the related neural findings in the 
following. 

The hyper-connectivity observed at the 
fronto-temporal connection represents rein-
forcement of information processing at the 
frontal and temporal regions. The frontal re-
gion is known to be involved in various high-
level cognitive functions such as attention 
(Miller and Cummings, 2007). Therefore, 
when involvement of the frontal region in 
process of information is increased poten-
tially the functional connection between this 
region and other parts of the brain is also en-
hanced. For instance, an exaggerated atten-
tion to the irrelevant cues could increase the 
involvement of the frontal region and subse-
quently its functional connection to other re-
gions. This exaggerated attention or miscar-
riage to filter out unimportant information is 
also observed in OCD individuals (Antony 
and Stein, 2009). Dysfunction of frontal cor-
tex could impair the inhibitory mechanism as 
well (Garcia-Junco-Clemente et al., 2017) 
which is a major sign of OCD (Chamberlain 
et al., 2005). In addition to inhibitory mecha-
nism, the decision making process is also dis-
rupted in OCD (Abramovitch et al., 2015; Ay-
din et al., 2014) which is also related to activ-
ity of frontal region and striatum. This in-
censement is mainly observed at the left 
frontal region and supposed to be asymmetric 
(Grützmann et al., 2017). Although, findings 
on the disruptions of the frontal cortex in 

OCD patients are divergent (Lewin et al., 
2014; Nakao et al., 2014; Wong et al., 2015; 
Van den Heuvel et al., 2005; Gonçalves et al., 
2016; Swinson et al., 2001); a moderate in-
crease of the beta band has been reported in 
other studies as well (Purcell et al., 1998; Ru-
bia et al., 2011). The enhanced connections 
are observed at the frontal, temporal, parietal 
regions. The enhanced functional connectiv-
ity between frontal and temporal regions has 
been related to an excessive attention to in-
consequential information (Fornito et al., 
2013) which is an indicator of people with ul-
tra-high-risk for psychosis, and the audi-
tory/verbal hallucination in schizophrenic pa-
tients (Hoffman et al., 2011). Therefore, we 
think that exaggerated process of information 
at the frontal and temporal regions will in-
crease their interconnection as well as their 
connectivity to other parts of the brain such as 
basal ganglia and cingulum in OCD patients. 
Since, the EEG data mostly captures the cor-
tical activities, therefore, the most significant 
results were observed at the fronto-temporal 
connections. We hope these findings could 
improve theoretical construct about the influ-
ence of OCD on the brain structure and func-
tions and open an avenue to intervention par-
adigms.  
 
Limitation 

Considering the ethical issues, we only re-
cruited the OCD patients under medication in 
our study. However, the medication could in-
fluence the functionality of the brain. There-
fore, the results may not be directly extended 
to all OCD patients. 
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