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ABSTRACT 

Antimicrobial resistance (AMR) has emerged as one of the global threats to human health in the 21st century. 

Drug discovery of inhibitors against novel targets rather than conventional bacterial targets has been considered 

an inevitable strategy for the growing threat of AMR infections. In this study, we applied quantitative structure-

activity relationship (QSAR) modeling to the LpxC inhibitors to predict the inhibitory activity. In addition, we 

performed various cheminformatics analysis consisting of the exploration of the chemical space, identification of 

chemotypes, performing structure-activity landscape and activity cliffs as well as construction of the Structure-

Activity Similarity (SAS) map. We built a total of 24 QSAR classification models using PubChem and MACCS 

fingerprint with 12 various machine learning algorithms. The best model with PubChem fingerprint is the Ex-

tremely Gradient Boost model (accuracy on the training set: 0.937; accuracy on the 10-fold cross-validation set: 

0.795; accuracy on the test set: 0.799). Furthermore, it was found that the best model using the MACCS fingerprint 

was the Random Forest model (accuracy on the training set: 0.955; accuracy on the 10-fold cross-validation set: 

0.803; accuracy on the test set: 0.785). In addition, we have identified eight consensus activity cliff generators that 

are highly informative for further SAR investigations. It is hoped that findings presented herein can provide guid-

ance for further lead optimization of LpxC inhibitors. 
 

Keywords: Antimicrobial resistance, LpxC, QSAR, machine learning, cheminformatics, activity cliff, chemotype 

 

 

INTRODUCTION 

The rampant use of antibiotics in human 

medicine and animal husbandry has led to the 

emergence of multidrug-resistant (MDR) 

pathogenic bacteria, which poses a growing 

threat to global public health. Amongst all an-

tibiotics, about 70 % of pathogenic bacteria 

have developed resistance to at least one anti-

biotic (Bush and Bradford, 2016). New anti-

biotics directed at novel targets are urgently 
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needed to overcome resistance to existing an-

tibiotic classes. The most important features 

distinguishing Gram-negative organisms 

from Gram-positive organisms, is outer mem-

brane. As a significant challenge to antimicro-

bial agents due to its remarkable capabilities 

to restrict the access of small molecule drugs 

to the periplasmic space, the outer membrane 

of Gram-negative bacteria has been exploited 

for its biogenesis pathways to find new anti-

biotic targets. Among the various checkpoint 

enzymes that are responsible for outer mem-

brane assembly and lipid A synthesis, the 

UDP-3-O-(R-3-hydroxymyristoyl)-N-acetyl-

glucosamine deacetylase, encoded by LpxC, 

is a critically important enzyme in the lipid A 

biosynthetic pathway, and is considered as a 

novel antibiotic target for the containment of 

MDR Gram-negative bacteria. LpxC is a sin-

gle-copy gene conserved in all Gram-negative 

bacteria. The UDP-3-O-(R-3-hydroxyacyl)-

N-acetylglucosamine deacetylase (LpxC) is a 

zinc ion-dependent enzyme catalyzing the 

first irreversible step of lipid A (as hydropho-

bic membrane anchor of lipopolysaccharide 

(LPS) which is critical for cell viability) bio-

synthesis. Unlike human proteins, LpxC does 

not share any sequence or structural homol-

ogy. Therefore, it may become a novel target 

for the new drugs against MDR Gram-nega-

tive bacteria (Erwin, 2016; Onishi et al., 1996; 

Young et al., 1995). 
The drug discovery of LpxC inhibitors 

dated back to the 1980s. To date, numerous 

LpxC inhibitors have been developed, includ-

ing ACHN-975, which has entered clinical 

trials. On the one hand, it is a selective LpxC 

inhibitor with a sub-nanomolar potency, on 

the other hand, it is a potent compound cover-

ing a broad spectrum of Gram-negative bac-

teria. However, clinical trial phase I was dis-

continued due to local inflammation at the in-

jection site (ClinicalTrials.gov Identifier: 

NCT 01597947) and cardiovascular toxicities 

in mice models. Considering the structural 

perspective, most of the developed LpxC in-

hibitors contain a hydroxamate group as the 

chelating ‘warhead’ targeting the catalytic 

zinc ion of LpxC. However, recent studies 

have explored non-hydroxamate-containing 

molecules, such as TP0586532 and 2-(1S-hy-

droxyethyl)-imidazole derivatives (Fujita et 

al., 2022; Yamada et al., 2020). These newly 

developed non-hydroxamate-containing mol-

ecules demonstrate potent inhibitory activi-

ties against MDR P. aeruginosa and Entero-

bacteriaceae. Due to the critical role of LpxC 

as a lucrative antibacterial target, and the pau-

city of successful FDA-approved LpxC inhib-

itors, there is an urgent need to further explore 

the structure-activity relationships of LpxC 

inhibitors and develop more optimal inhibi-

tors.  

QSAR/QSPR is a kind of mathematical 

model to investigate quantitative structure-ac-

tivity/property relationship of chemical enti-

ties. There are two fundamental logical prin-

ciples underlying QSAR/QSPR: (i) com-

pound structure dictates its bioactivity and (ii) 

structurally similar compounds demonstrate 

similar bioactivities or properties (Tropsha, 

2010). There are two kinds of QSAR/QSPR 

based on the tasks: classification QSAR/ 

QSPR model and regression QSAR/QSPR 

model. The former aims to predict the bioac-

tivity classes of compounds, such as active/in-

active class of enzyme inhibitors, agonist/an-

tagonist category of biological receptors; 

while the latter aims to predict the detailed 

values of compounds, such as pIC50 of DNA 

gyrase inhibitors, melting point of certain bi-

omaterials. At this moment, QSAR/QSPR has 

become a practical powerful tool for compu-

tational drug discovery. In addition to drug 

discovery, they are also widely used in or-

ganic/inorganic chemistry, material science, 

chemical biology, forensic toxicology, and 

even environmental protection. Due to its 

wide spectrum of utilities, the OECD coun-

tries have now already established principles 

for QSAR modeling consisting of five rules: 

defined endpoint, unambiguous algorithms, 

defined applicability domain, modeling vali-

dation, and mechanistic interpretation to 

standardize the application of QSAR/QSPR 

modeling. This involves all steps of modeling 

process: data collection, data preprocessing, 

data splitting, machine learning modeling 
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process, validation of the model, and mecha-

nistic interpretation of feature importance 

(Fjodorova et al., 2008; Piir et al., 2018; 

Tropsha, 2010). 

In this study, we have performed a QSAR 

modeling study for LpxC inhibitors from the 

ChEMBL database to predict inhibitory bio-

activities. In addition, we have visualized and 

analyzed chemical space, structure-activity 

landscape, and activity cliffs within the da-

tasets. All the modeling and findings in the 

study can serve further lead optimization for 

more LpxC inhibitors. 

 

MATERIALS AND METHODS 

The methodology adopted in this compu-

tational study is summarized in Figure 1. The 

study design consists of data compilation, ex-

ploratory data analysis, structure-activity 

landscape, and chemotype analysis. 

 

Data compilation 

Data sets of inhibitors against LpxC (Tar-

get ID: CHEMBL 3855) employed in this 

study were retrieved from the ChEMBL 31 

database. There was a total of 587 bioactivity 

data points with IC50 values for LpxC. The 

data set was then pre-processed by removing 

the redundant, unqualified, and missing data 

points, resulting in a working data set consist-

ing of 491 compounds. 

 

Methodology overview 

As the focus of this study is on the devel-

opment of classification models of biological 

activity, the bioactivity data points of LpxC 

inhibitors were indicated by IC50 and further 

transformed to pIC50 by taking the negative 

logarithm to the base of 10. 

 

 

 

 

 

 

 

 

 
 

Figure 1: Methodological workflow employed for this study. Cylinders denote the data sets and rectan-
gles denote the processes.
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The compounds with pIC50 values greater 

than 9 (pIC50 ⩾ 9, corresponding to an IC50 

value of 1 nM) were categorized as potent. 

Those with pIC50 values ranging between 8 

and 9 (9 > pIC50 ⩾ 8, corresponding to an IC50 

value of 1 – 10 nM) were categorized as ac-

tive whereas those with of less than 7 (pIC50 < 

7, corresponding to an IC50 value of 100 nM) 

were categorized as inactive. Moreover, the 

intermediate bioactivity data with pIC50 values 

ranging between 7 and 8 were categorized as 

intermediate.  

 

Molecular descriptor generation and  

calculation 

The DataWarrior software (Sander et al., 

2015) was used to compute a total number of 

six descriptors on physicochemical properties 

associated with drug-likeness: molecular 

weight (MW), octanol-water partition coeffi-

cient (Log P), number of hydrogen bond ac-

ceptors (nHA), number of hydrogen bond do-

nors (nHD), number of rotatable bonds (nRot) 

and topological polar surface area (TPSA). 

This chemical space analysis was performed 

on two groups of compounds, defined as 

group1 (potent and active classes, or pIC50 ⩾ 

8) and group2 (intermediate and inactive clas-

ses, or pIC50 < 8). 

 

Univariate and multivariate analyses 

As an exploratory data analysis, univari-

ate statistical analysis was conducted to inves-

tigate the different patterns and trends of indi-

vidual molecular descriptors between two 

groups of compounds using 6 descriptive sta-

tistical parameters: the minimum (Min), first 

quartile (Q1), median, mean, third quartile 

(Q3) and maximum (Max). In addition, statis-

tical differences of descriptors among two 

groups of compounds were evaluated using 

the p-value obtained from Student’s t-test. 

Principal component analysis (PCA) as a 

dimensionality-reduction unsupervised ma-

chine learning method is executed to visualize 

the distribution patterns, overlapping of the 

molecules. 

 

Structure-activity relationship 

Structure-activity relationship (SAR) is 

based on the idea that structure dictates activ-

ity, and molecules with similar structures 

demonstrate similar bioactivities. The pub-

licly available structure-activity data of LpxC 

inhibitors provides an opportunity to mine 

SAR. The SAR landscape can be considered 

as a chemical space with an extra dimension 

of biological activity. Thus, in this study, 

structure-activity similarity (SAS) maps and 

structure-activity landscape index (SALI) val-

ues were used to visualize the structure-activ-

ity landscape and identify activity cliffs. 

A SAS map is a tool for SAR analysis of 

compound data sets tested with one molecular 

target. The plot is a pairwise 2D plot of activ-

ity difference against structure similarity and 

consists of four quadrants: smooth regions of 

the SAR space, rough region of activity cliffs, 

nondescript region (i.e., low structural simi-

larity and low activity similarity) as well as 

scaffold hopping region (low structural simi-

larity but high activity similarity). Activity 

Landscape Plotter V.1, a webserver, is used to 

generate SAS maps by quantifying the activ-

ity cliffs (González-Medina et al., 2017). 

SALI value is a pairwise measure between ac-

tivity difference and structural difference for 

each pair of compounds and was calculated as 

Eq. 2, proposed by Guha and Van Drie (Guha, 

2012): 

 

𝑆𝐴𝐿𝐼 =  
| 𝐴𝑚1− 𝐴𝑚2 |

1−𝑠𝑖𝑚(𝑚1,𝑚2)
      (1) 

where Am1 and Am2 are the activities of mol-

ecule 1 (abbreviated as m1) and molecule 2 

(abbreviated as m2) while sim (m1, m2) is re-

ferred to the similarity coefficient between 

two molecules (in this work computed with 

the PubChem and MACCS fingerprint). The 

SALI value increases with the possibility of 

the pair of compounds forming ACs. The val-

ues were mapped onto the SAS maps using a 

continuous color scale, ranging from green 

color (structurally most similar pairs) to red 

color (least similar pairs). In this study, the ac-

tivity of molecules is represented by pIC50 val-

ues of molecules whilst similarity is 



EXCLI Journal 2023;22:975-991 – ISSN 1611-2156 

Received: July 15, 2023, accepted: September 01, 2023, published: September 05, 2023 

 

 

979 

represented by PubChem and MACCS finger-

print similarity. 

The identification of AC is one of the 

main applications of activity landscape meth-

ods. The criterion of AC depends on two var-

iables: fingerprint similarity and activity dif-

ference (Cruz-Monteagudo et al., 2014; 

Stumpfe et al., 2019). The threshold of activ-

ity difference is set to two magnitudes as de-

fault, which means that pIC50 level differences 

should be ≥ 2, and similarity set according to 

the SAS map statistics where mean+2 stand-

ard-deviation difference to be the threshold. 

 

Molecular descriptors generation 

Molecular fingerprints are the representa-

tions of a complex form of molecular de-

scriptors, which describe molecules in terms 

of their constitution, connectivity, and physi-

cochemical properties. They are typically en-

coded by bit strings to characterize a given 

molecule. In this study, PubChem and 

MACCS fingerprints provided by the PaDEL 

package (Yap, 2011) were used for modeling. 

The former contains 881 binary representa-

tions of the chemical structure fragments, and 

the latter contains 166 binary representations 

of the chemical structure fragments. 

 

Feature selection 

A feature selection procedure was con-

ducted to improve the accuracy of the QSAR 

model and to avoid overfitting. In this proce-

dure, the correlation-based filter method was 

deployed: low-variance features (variance < 

0.1), features with collinearity (correlation > 

0.90) were removed, so that feature complex-

ity is decreased. 

 

Data balancing and splitting 

The working dataset from the previous 

step of data cleansing was noticeably imbal-

anced between various bioactivity classes 

(e.g. the ratio of intermediate ligands to active 

ligands is more than two) as shown in Figure 

7. To avoid any overfitting due to data 

imbalance, the datasets were then further bal-

anced via the oversampling technique, which 

means the data are randomly duplicated in mi-

nority classes. After data balancing, the bal-

anced datasets were subjected to further split 

into training and testing sets according to the 

ratio of 80:20. The changes of data before and 

after the data balancing process is illustrated 

in Figure 2.  

 

Figure 2: Comparison between working datasets 
and balanced datasets 

 

 

QSAR model construction 

The QSAR models in this study are mul-

ticlass classification models with aims of pre-

dicting four bioactivities of LpxC inhibitors, 

namely potent class, active class, intermediate 

class, and inactive class. Hereby, to facilitate 

multiclass classification modeling, the one-

vs-rest (OVR) approach is utilized. Shown in 

Figure 3 is the workflow for QSAR modeling. 

To get the best model, 12 machine learning 

algorithms for classification have been em-

ployed independently for model construction, 

as shown in Results & Discussion. The per-

formance for each model is evaluated and the 

algorithm yielding the best performance will 

be taken for downstream analysis. 

 

QSAR model validation 

There are two aspects of QSAR model 

validation: internal validation and external 

validation. 
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Figure 3: Workflow of the QSAR study. Different colors represent different procedures of QSAR mod-
eling process: black for data collection and data cleansing, pink for molecular fingerprint calculation, 
purple for data balancing and splitting, blue for QSAR modeling, turquoise for model validation and 
yellow for determination of applicability domain 

 

Internal validation 

In this study, the balanced dataset was 

subjected to further split into training and test-

ing sets according to the ratio of 80:20. 

Within the training set, a 10-fold cross-vali-

dation was performed to guarantee the robust-

ness and reliability of the model. Briefly, the 

training data is divided into ten folds and used 

each fold for the internal validation while the 

rest nine folds are used to train the model. 

This process was repeated iteratively until all 

folds were used for validation. 

 

External validation 

The prediction performance of the QSAR 

classification models was evaluated via three 

parameters, namely accuracy (ac), recall (re), 

and Matthew’s correlation coefficient (MCC) 

(Chicco and Jurman, 2020), which are defined 

by the following equations: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (2) 

Recall  = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (3) 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (4) 

where TP, TN, FP, and FN denote true 

positive, true negative, false positive, false 

negative, individually. The high accurate 

model yields a high ac and re values (maxi-

mum of 1). A perfectly classified model 

yields a high MCC value, approaching 1, 

while low MCC value (minimum of -1) rep-

resents a perfect misclassification in the 

QSAR model. 

 

Applicability domain determination 

The applicability domain (AD) of the 

QSAR models in this study are assessed by 

means of the principal component analysis 

(PCA) bounding box. This essentially entails 

comparing the chemical space of compounds 

from the training set with those from the test 

set via PCA analysis of scores plot. DataWar-

rior (Sander et al., 2015) is used for AD deter-

mination by PCA. 
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As mentioned in the Introduction sec-

tion, the OECD countries have established 

principles for QSAR modeling. The robust-

ness of the QSAR models in this study are 

shown in Table 1 in line with OECD criteria 

(Fjodorova et al., 2008; Piir et al., 2018; 

Tropsha, 2010). 

 

Chemotype analysis 

We conducted chemotype analysis to gain 

insights to the representative molecular scaf-

folds. In this study, we utilized Murcko scaf-

fold approaches to conduct chemotype analy-

sis. Murcko and Bemis dissect a molecule into 

four parts: ring systems, linkers, side chains, 

and the Murcko framework combinates ring 

systems and linkers in a given molecule 

(Bemis and Murcko, 1996). In this study, 

Murcko scaffolds and cyclic skeleton systems 

are generated for LpxC inhibitors and com-

pared by corresponding pIC50 levels, so that 

favorable, frequent, unfavorable scaffolds can 

be identified. DataWarrior (Sander et al., 

2015) is used for scaffold generation and 

analysis. 

 

RESULTS 

Exploratory data analysis 

A total number of 587 LpxC inhibitors 

were retrieved from the ChEMBL database. A 

working dataset of non-redundant compounds 

consisting of 491 LpxC inhibitors was ob-

tained after pre-processing data, as summa-

rized in Table 2, and then subjected to further 

investigation.  

 

 
Table 2: Summary of the dataset used for predict-
ing the activity of LpxC inhibitors 

 Potent Active Intermediate Inactive Total 

Initial  

dataset 

 

- - - - 587 

Working  

dataset  

 

105 179 83 124 491 

Balanced  

dataset 

 

179 179 179 179 716 

 

 

 
Table 1: Robustness of the models according to OECD criteria 

Criteria  Significance  Models in this study 

Defined endpoint Mandatory  Bioactivity classes based on pIC50 values 

Unambiguous algorithms Mandatory  12 machine learning algorithms with clearly 
defined hyperparameters and attributes 
from Scikit Learn 

Defined applicability domain Mandatory  Molecular fingerprint boundary box by PCA 

Model validation Mandatory  Internal validation by 10-fold cross valida-
tion. 
External validation by test set evaluation 

Mechanistic interpretation,  
if possible 

Optional  Feature importance has identified top 
ranked features that contribute to endpoint 
values, however, due to the interpretability 
of the features, further mechanistic interpre-
tation didn’t proceed. 
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To determine the different characteristics 

between two groups of molecules (group1: 

potent and active; group2: intermediate and 

inactive), an exploratory data analysis of six 

drug-likeness descriptors was performed via 

statistical analysis (Figure 4 and Table 3). 

This analysis depicted that most LpxC inhibi-

tors abide by drug-like properties according to 

Lipinski’s rule of 5 and other drug likeness 

rules (Ghose et al., 1999; Lipinski et al., 2001; 

Muegge et al., 2001). All the six properties 

demonstrated non-parametric distribution 

patterns, except for nHA and nRot. After the 

Mann-Whitney U test, MW, nHD and TPSA 

have p-values < 0.05, meaning that they 

demonstrate statistical significance. Since 

nHA and nRot properties abide by normal dis-

tribution, t-test is used for checking p-values. 

Both nHA and nRot demonstrate statistical 

significance with t-test. Generally, group1 

molecules have higher MW, nHA, nHD, nRot 

and TPSA values than group2 molecules. 

 

Principal component analysis 

PCA was applied to explore the chemical 

space of LpxC inhibitors as shown in Figure 

5. PCA plot with six physicochemical proper-

ties has shown that group1 molecules gener-

ally differ significantly in chemical space 

from group2 molecules. Group1 molecules 

occupy the concentrated area within the 

chemical space, mostly contained by group2 

molecules. PCA plot has indicated that 

group1 molecules are less diverse than group2 

molecules. 

 

Figure 4: Box plot of physicochemical properties between group1 and group2 molecules of LpxC inhib-
itors. Group1 molecule, indicated potent and active groups, is represented with blue colour while group2 
molecule, indicated intermediate and inactive groups, is represented with brown color. 
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Table 3: Exploratory data analysis of six drug-likeness descriptors and comparison between group1 and 
group2 molecules of LpxC inhibitors 

Descriptor MW LogP nHA nHD nRot TPSA 

G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 G1 G2 

p-value 2.18e-15 0.35 4.62e-09 0.00 3.34e-13 4.42e-25 

Min 283.37 206.68 -1.08 -1.59 3.00 2.00 2.00 0.00 5.00 2.00 49.33 17.82 

Max 521.56 576.69 3.98 3.87 10.00 10.00 5.00 5.00 12.00 12.00 162.98 168.42 

Median 399.69 365.41 1.81 1.51 7.00 6.00 2.00 2.00 7.00 6.00 112.08 88.74 

Mean 409.57 361.67 1.61 1.51 7.00 6.21 2.52 2.27 7.35 6.16 112.37 90.18 

Skew 0.44 0.18 -0.46 -0.39 0.26 -0.26 1.36 0.60 0.71 0.14 0.27 -0.22 

Kurtosis -0.11 -0.45 -0.05 -0.13 -0.37 -0.06 1.21 0.54 -0.07 0.20 0.47 0.54 

Note: All numbers are rounded in two decimal places. Abbreviation: G, group; Min, minimum; Max, maximum. 

 

 

 

Figure 5: PCA for the six physiochemical proper-
ties of the LpxC inhibitors. Compounds from 
group1 and 2 are represented by red and blue 
dots, respectively. 

 

The eigenvalues of the six properties as 

shown in Table 4 have revealed the three prin-

cipal components contribute about 90% of the 

whole data sets. PC1 is primarily contributed 

by nHA (0.510) and MW (0.494), followed by 

TPSA (0.491), nRot (0.437). PC2 has the 

highest loadings by nHA (0.226) while LogP 

(-0.783) and nRot (-0.407) are the most sig-

nificant negative contributors. PC3 has the 

most significant negative contributor nHD  

(-0.941). 

 

Table 4: Eigenvalues of the six properties in PCA 
analysis 

Property PC1 PC2 PC3 

MW 0.49 -0.29 0.04 

LogP -0.07 -0.78 -0.22 

nHA 0.51 0.23 0.21 

nHD 0.24 0.22 -0.94 

TPSA 0.49 0.19 0.12 

nRot 0.44 -0.41 0.06 

Cumulative 

variance 

(%) 

51.43 75.01 89.72 

 

Structure-activity landscape (SAL)  

visualization 

According to Table 5, the mean and stand-

ard deviations of the fingerprint similarities 

are listed. As described in the methodology, 

the similarity criterion to define AC is set to 

mean+2 standard deviation, i.e., 0.80 for Pub-

Chem fingerprint, 0.91 for MACCS finger-

print. The activity magnitude is set to two. 

The AC quadrants in Figure 6 are both mar-

ginal and sparse, so that the existence of SAR 

discontinuities does not affect the overall 

SAL. This indicates the feasibility of building 

QSAR models using the fingerprints with the 

LpxC datasets.
 



EXCLI Journal 2023;22:975-991 – ISSN 1611-2156 

Received: July 15, 2023, accepted: September 01, 2023, published: September 05, 2023 

 

 

984 

Table 5: Statistics of SAS map

Statistics PubChem fingerprint MACCS fingerprint 

SALI Similarity Activity  

difference 

SALI Similarity Activity  

difference 

Sum 120295 120295 

Mean 4.23 0.55 1.75 4.33 0.57 1.75 

SD 4.88 0.13 1.45 4.71 0.17 1.45 

Min 0.00 0.25 0.00 0.00 0.11 0.00 

Q1 1.41 0.46 0.56 1.58 0.45 0.56 

Median 3.24 0.53 1.30 3.61 0.53 1.30 

Q3 6.21 0.63 2.78 6.20 0.71 2.78 

Max 357.42 1.00 8.14 259.00 1.00 8.14 

Abbreviation: SALI, structure-activity landscape index; SD, standard deviation; Q, quartile; Min, minimum; Max, maximum 

Figure 6: Structure-activity landscape (SAL) of LpxC inhibitors as visualized by the density SAS map. 
Panel A is the density SAS map using the PubChem fingerprint while B is for the MACCS fingerprint. 

 
 

Quantitative structure-activity relationship 

(QSAR) modeling and validation 

Both PubChem and MACCS fingerprints 

are selected in combination with 12 repre-

sentative classification algorithms. Based on 

the model 1 performance metrics shown in 

Table 6, Random Forest algorithm, also 

known as RF, provides the best performance 

with accuracy of 0.955 in the training set, 

0.823 in the 10-fold cross validation set and 

0.826 in the testing set. Following RF, other 

algorithms including Extra trees (ET), Ex-

treme gradient boost (XGB), K-nearest 

neighbor (KNN), and Multilayer perceptron 

(MLP) provide equivalently good model per-

formances. Whilst Naive Bayes (NB) algo-

rithm is the least ranked algorithm. As shown 

in Supplementary Figure 1A, the test set falls 

within the training set of the PCA plot. For 

model 2 performance metrics (Table 7), RF 

and NB are also the best and worst performing 

algorithms, respectively. As shown in Supple-

mentary Figure 1B, the test set falls within the 

training set of the PCA plot, as well. 
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Table 6: Performance metrics for model 1. Model 1 incorporates PubChem fingerprints (variance 
threshold=0.10, correlation threshold = 0.95, random state = 42) 

 Accuracy Recall MCC 

Train CV Test Train CV Test Train CV Test 

DT 0.937 0.75 0.743 0.936 0.748 0.743 0.916 0.67 0.659 

ET 0.937 0.79 0.792 0.936 0.789 0.793 0.916 0.724 0.723 

RF 0.937 0.795 0.792 0.936 0.794 0.792 0.916 0.729 0.725 

GB 0.937 0.787 0.785 0.937 0.785 0.785 0.916 0.719 0.713 

LGBM 0.937 0.789 0.764 0.937 0.787 0.763 0.916 0.721 0.686 

XGB 0.937 0.797 0.799 0.937 0.796 0.801 0.916 0.733 0.733 

SVC 0.706 0.642 0.653 0.705 0.64 0.663 0.611 0.528 0.542 

MLP 0.937 0.776 0.778 0.937 0.775 0.78 0.916 0.705 0.706 

LR 0.836 0.74 0.736 0.834 0.738 0.742 0.781 0.656 0.651 

KNN 0.934 0.75 0.778 0.933 0.749 0.779 0.911 0.67 0.705 

NB 0.617 0.596 0.521 0.618 0.597 0.505 0.514 0.489 0.371 

GP 0.909 0.787 0.771 0.909 0.786 0.771 0.879 0.72 0.694 

Abbreviations: DT, Decision tree; ET, Extra trees; RF, Random Forest; GB, Gradient boost; LGBM, LightGBM; XGB, Extreme 
gradient boost; MLP, Multilayer perceptron; LR, Logistic regression; KNN, K-nearest neighbor; SVM, Support vector machine; NB, 
Naïve-bayes; GP, Gaussian process 

 

Table 7: Performance metrics for model 2. Model 2 incorporates MACCS fingerprints (variance thresh-
old=0.10, correlation threshold = 0.95, random state = 42). 

Abbreviations: DT, Decision tree; ET, Extra trees; RF, Random Forest; GB, Gradient boost; LGBM, LightGBM; XGB, Extreme 
gradient boost; MLP, Multilayer perceptron; LR, Logistic regression; KNN, K-nearest neighbor; SVM, Support vector machine; NB, 
Naïve-bayes; GP, Gaussian process 

 

 Accuracy Recall MCC 

Train CV Test Train CV Test Train CV Test 

DT 0.955 0.77 0.736 0.954 0.768 0.74 0.939 0.694 0.647 

ET 0.955 0.79 0.792 0.954 0.788 0.798 0.939 0.722 0.723 

RF 0.955 0.803 0.785 0.954 0.801 0.792 0.94 0.739 0.713 

GB 0.955 0.775 0.75 0.954 0.773 0.761 0.94 0.703 0.666 

LGBM 0.951 0.768 0.792 0.951 0.766 0.798 0.935 0.693 0.722 

XGB 0.955 0.769 0.785 0.954 0.768 0.792 0.94 0.695 0.712 

SVC 0.715 0.659 0.694 0.714 0.657 0.702 0.622 0.553 0.594 

MLP 0.953 0.783 0.771 0.952 0.782 0.777 0.937 0.714 0.694 

LR 0.771 0.701 0.667 0.77 0.7 0.672 0.695 0.607 0.553 

KNN 0.955 0.787 0.743 0.954 0.785 0.75 0.939 0.718 0.657 

NB 0.57 0.556 0.556 0.571 0.557 0.554 0.471 0.453 0.439 

GP 0.923 0.782 0.743 0.923 0.781 0.75 0.899 0.713 0.657 
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Activity cliff visualization 

According to the threshold criteria listed 

in Materials and Methods, there are a total 

of 367 and 103 activity cliffs in PubChem and 

MACCS fingerprint, respectively. There are 

82 common activity cliffs between these two 

fingerprint datasets. Amongst the activity 

cliffs, there are eight common activity cliff 

generators. Figure 7A&B depicts the chemi-

cal structure of all the eight common activity 

cliff generators and the representative activity 

cliffs that are formed with pairwise mole-

cules, respectively. The existence of activity 

cliffs is detrimental to development of QSAR 

predictive models, nevertheless, this provides 

highly informative insights into the SAR of 

molecules for medicinal chemists (Cruz-

Monteagudo et al., 2014). These activity cliffs 

and activity cliff generators can provide im-

portant guidance to lead optimizations. 
 

 

Figure 7: Activity cliff visualization. (A) All the eight common activity cliff generators and (B) representa-
tive activity cliffs that are formed with pairwise molecules 
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Chemotype determination and chemotype 

analysis 

Shown in Table 8 is scaffold diversity 

amongst different subsets of LpxC molecules. 

Generally, molecules in group1 demonstrate 

lower scaffold diversity than molecules in 

group2. Therefore, there is an urgent need to 

find more novel scaffolds for LpxC inhibitors. 

In scaffold analysis, a total of six Murcko 

scaffolds (Ns) with frequency ≥ 10 were ex-

tracted as shown in Figure 8. Scaffold 1, with 

frequency of 108, is biphenyl scaffold. 

Amongst these 108 molecules, nine of them 

are with pIC50 ≥ 8, even 9. All of them are the 

combinations of scaffold 1 and hydroxamic 

acid as the chelating moieties. Scaffold 2, 

with frequency of 26, is benzyloxy benzene. 

Scaffold 3, with frequency of 22, is 4-phenyl-

1,2-dihydropyridin-2-one, Scaffold 4, with 

frequency of 29, is 2-phenyl-4,5-dihydro-1,3-

oxazole. This scaffold is seen in early devel-

oped LpxC inhibitors in the 1990s, such as the 

L-573655, L-161240 by Merck company. 

Scaffold 5, with frequency of 10, is 5-(phe-

noxymethyl)-3-phenyl-1,2,4-oxadiazole. Scaf-

fold 4, with frequency of 29, is 2-phenyl-4,5-

dihydro-1,3-oxazole. This scaffold is seen in 

early developed LpxC inhibitors in the 1990s, 

such as the L-573655, L-161240 by Merck 

company. A series of scaffold 1 based analogs 

were designed and synthesized to optimize bi-

oactivities. Scaffold 6, with frequency of 16, 

is benzene ring that is abundant in many 

newly developed LpxC inhibitors. The first 

one is ACHN-975 and is also the sole LpxC 

inhibitor that has entered clinical trials till 

date (Krause et al., 2019). The benzene ring is 

addicted with a side chain of hydroxamic acid 

as the head, and on the para position linked to 

an aliphatic side chain with two triple bonds 

as the tail. Although clinical trials of ACHN-

975 terminated due to tachycardia and hypo-

tension side effects, the molecular scaffold is 

expected to generate more optimal lead mole-

cules. 

 

DISCUSSION 

AMR is a rapidly growing concern in pub-

lic health. There are many efforts of various 

explorations to overcome the challenge of 

AMR, including the development of direct-

acting antibacterial against novel targets, 

drug-repurposing, antibiotic potentiators, 

anti-virulence approaches, immune modula-

tors, etc. According to statistics, direct-acting 

antibacterial against novel targets account for 

the most significant projects (Theuretzbacher 

et al., 2020). LpxC inhibitors are one of the 

most promising novel direct-acting antibacte-

rials in the preclinical pipeline. Although 

there are ACHN-975 and RC-01 that have en-

tered clinical trials, they both have been ter-

minated due to safety issues. Based on the 

core structure of ACHN-975, there are some 

additional inhibitors, such as LpxC -289, 

LpxC -313 and LpxC -516 that have arisen at-

tentions as they demonstrate potent LpxC in-

hibitory activities in vitro and better safety 

profiles, and LpxC-516 is the best (Krause et 

al., 2019). 

 

 

Table 8: Scaffold diversity analysis for LpxC inhibitors 

 N Ns Nss Ncsk Ns/N Nss/N Ncsk/N Ncsk/Ns 

Complete 491 191 141 92 0.39 0.29 0.19 0.48 

pIC50 ≥ 8.0 284 103 75 61 0.36 0.26 0.22 0.59 

pIC50 < 8.0 207 99 72 58 0.48 0.35 0.28 0.59 

Abbreviation: N, number of molecules; Ns, number of Murcko scaffolds; Nss, number of singleton Murcko scaffolds, Ncsk, number 
of cyclic skeletons. 
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Figure 8: Chemotype analysis for LpxC inhibitors. (A) Scaffold (frequency ≥ 10) versus bioactivity plot 
and (B) Top six Murcko scaffolds visualization 

 



EXCLI Journal 2023;22:975-991 – ISSN 1611-2156 

Received: July 15, 2023, accepted: September 01, 2023, published: September 05, 2023 

 

 

989 

Like conventional bacterial targets, LpxC 

inhibitors will inevitably encounter resistance 

due to various mechanisms. The primary fac-

tor contributing to resistance to LpxC inhibi-

tors is efflux pump in P. aeruginosa, to date. 

For Enterobacteriaceae, however, overex-

pression of efflux pumps has not been re-

ported (Caughlan et al., 2012; Tomaras et al., 

2014). As a novel target, there are no known 

resistance genes on mobile elements for 

LpxC. The only identified chromosomal point 

mutation of the cytosine 11 bp upstream (to 

adenine or guanine or deletion) of the LpxC 

start site resulted in elevated MICs for LpxC 

inhibitors. However, this mutation is rela-

tively rare and occurs with a low frequency 

(Krause et al., 2019). Previous study has 

proved the unique mechanism of resistance to 

LpxC inhibitors in E. coli by mutations of 

fabZ, a dehydratase in fatty acid biosynthesis 

and thrS, Thr-tRNA ligase through rebalanc-

ing bacterial cell homeostasis (Zeng et al., 

2013). 

Apart from being direct-acting antibacte-

rial, it is important to note that LpxC inhibi-

tors can play the role of antibiotic potentiators 

by sensitizing bacteria to conventional antibi-

otics, as well (Erwin, 2016). This has been 

demonstrated in animal models, where syner-

gistic effects of PF-5081090 have been ob-

served with polymyxin B nonapeptide in a 

mouse model of P. aeruginosa infection and 

synergy of both rifampin and vancomycin 

with LpxC inhibitors of P. aeruginosa and K. 

pneumoniae in mouse models (Erwin, 2016). 

Previous studies exploring the SAR of 

LpxC inhibitors have used a variety of meth-

odologies. For instance, the group of Zuo per-

formed 3D-QSAR studies with pyridone me-

thyl sulfone hydroxamate molecules (Zuo et 

al., 2017). There are additional studies focus-

ing on 3D-QSAR with satisfactory model per-

formance and validated by molecular dock-

ings(Shiri et al., 2018). The group of Ghasemi 

has devised a new methodology of QSAR us-

ing LpxC inhibitors by integrating interaction 

energies of molecular dynamics trajectories 

and QSAR modeling (Ghasemi et al., 2012). 

In comparison with previous representative 

studies, this study uses conventional QSAR 

modeling approaches instead of 3D or 4D 

QSAR approaches, therefore, the conforma-

tional and 3D-structural aspects are not incor-

porated into the modeling process, which is a 

noticeable drawback in study design. On the 

other hand, the size of data sets that are com-

piled from the ChEMBL database turn out to 

be much bigger and more diverse, compre-

hensive. Therefore, the applicability domain 

of this study is broader.  

The significance of the study can be con-

cluded by three aspects: First and foremost, 

the two QSAR models we built demonstrate 

robustness and reliability in performance, in 

line with OECD criteria (Fjodorova et al., 

2008). Both can be used as bioactivity predic-

tors for potential new chemical entities. Be-

sides, the activity cliffs and activity cliff gen-

erators identified in this study provide inspi-

rational information for further lead optimiza-

tion. 

 

CONCLUSIONS 

AMR is one of the most serious global 

health threats globally of the late 20th and 21st 

century. Drug discovery of inhibitors against 

novel targets rather than conventional bacte-

rial targets has been considered an inevitable 

strategy to address the growing threat of 

AMR infections. This study investigated the 

structure-activity relationship (SAR) of LpxC 

inhibitors using QSAR modeling and 

cheminformatics analysis. The best QSAR 

models built with the PubChem and MACCS 

fingerprint are using XGB and Random For-

est algorithms, respectively. In addition, we 

have identified eight consensus activity cliff 

generators that provide highly informative in-

sights on the SAR. It was found that scaffolds 

2, 3 and 5 are favorable scaffolds while scaf-

fold 4 is the unfavorable scaffold. In addition, 

scaffold 1 is the most prevalent scaffold 

amongst LpxC inhibitors. It is anticipated that 

insights gained from this study would be in-

strumental for the future design and discovery 

of LpxC inhibitors. 
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