Plasma lncRNA profiling identified BC200 and NEAT1 lncRNAs as potential blood-based biomarkers for late-onset Alzheimer’s disease
DOI:
https://doi.org/10.17179/excli2022-4764Keywords:
Alzheimer’s disease, memory disorders, gene expression profile, long non-coding RNA, biomarker, early diagnosisAbstract
Long non-coding RNAs (lncRNA) play critical roles in pathogenesis of neurodegenerative diseases. Human plasma carries lncRNAs that are stable in the blood, and their disease-specific profile have made them valuable biomarkers for some diseases. This study reports screening of the plasma levels of 90 lncRNAs in patients with Alzheimer disease (AD) to find out plasma-based AD biomarkers. Total RNA was isolated from plasma samples of 50 AD and 50 matched healthy controls. The plasma samples of 10 advanced AD patients and 10 matched healthy controls were screened for expression levels of 90 lncRNAs using Human LncRNA Profiler qPCR Array Kit (SBI). Based on the profiling results, lncRNAs BC200, NDM29, NEAT1, FAS-AS1 and GAS5-AS1 were selected for further analysis in all samples and their biomarker potency was evaluated by ROC curve analysis. We further surveyed RNAseq data by in silico analysis. We found that the NEAT1 and BC200 levels in the plasma of the AD patients were significantly higher compared with the control group (P=0.0021, p= 0.02, respectively). ROC curve analysis showed that the plasma level of NEAT1 and BC200 discriminated AD patients from healthy controls with sensitivity of 72 % and 60 %, and specificity of 84 % and 91 % respectively. Moreover, NEAT1 discriminated MCI (60 % sensitivity and 91 % specificity) and advanced-AD patients from healthy controls (73 % sensitivity and 71 % specificity). Besides, plasma level of BC200 discriminated the pre-clinical subjects from healthy controls with 83 % sensitivity and 66 % specificity. A positive correlation was also observed between plasma levels of BC200 with the age patients (r = 0.34, p=0.02). In silico RNAseq data analysis showed that a total of 33 lncRNAs were up-regulated but 13 lncRNAs were down-regulated significantly in AD patients compared with the healthy controls. In conclusion, this study elucidated that the plasma levels of lncRNAs NEAT1 and BC200 might be considered as potential blood-based biomarkers for AD development and progression.
Downloads
Additional Files
Published
How to Cite
License
Copyright (c) 2022 Majid Khodayi, Mohammad Khalaj-Kondori, Mohammad Ali Hoseinpour Feizi, Mortaza Jabarpour Bonyadi, Mahnaz Talebi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).