Quantitative aspects of nitric oxide production from nitrate and nitrite
DOI:
https://doi.org/10.17179/excli2022-4727Keywords:
nitric oxide, nitrate, nitrite, rate of nitric oxide productionAbstract
Nitric oxide (NO) is involved in many physiological and pathological processes in the human body. At least two major pathways produce NO: (1) the L-arginine-NO-oxidative pathway in which NO synthase (NOS) enzymes convert L-arginine to NO; (2) the nitrate-nitrite-NO reductive pathway in which NO is produced from the serial reduction of nitrate and nitrite. The deficiency of NO is involved in the pathophysiology of cardiometabolic disorders. Intervention with foods containing nitrate and nitrite can potentially prevent or treat some chronic diseases, including cardiovascular diseases and diabetes. A better understanding of the NO cycle would help develop effective strategies for preventing or treating the disorders in which NO homeostasis is disturbed. This review summarizes quantitative aspects of NO production, emphasizing the nitrate-nitrite-NO pathway. Available data indicates that total NO production by NOS-dependent L-arginine-NO pathway is about 1000 μmol.day-1. Of about 1700 μmol.day-1 ingested nitrate, ~25 % is extracted by the salivary glands and of which ~20 % is converted nitrite. It means that about 5 % of ingested nitrate is converted to nitrite in the oral cavity; assuming that all produced nitrite is reduced to NO in the stomach, it can be calculated that contribution of the nitrate-nitrite-NO pathway to the whole-body NO production is about 85 μmol.day-1 (1700 ×0.05=85) or approximately 100 μmol.day-1. The lower contribution of the nitrate-nitrite-NO pathway does not mean that this pathway has lower importance in the whole-body NO homeostasis. Even in the adequate L-arginine supply, NOS-dependent NO production is insufficient to meet all NO functions, and the nitrate-nitrite-NO pathway must provide the rest. In conclusion, the contribution of the nitrate-nitrite-NO pathway in the whole human body NO production is <10 %, and the nitrate-nitrite-NO pathway is complementary to the NOS-dependent NO production.
Downloads
Published
How to Cite
License
Copyright (c) 2022 Asghar Ghasemi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).