MicroRNA-30c-2-3p regulates ER stress and induces apoptosis in ovarian cancer cells underlying ER stress
DOI:
https://doi.org/10.17179/excli2020-2970Keywords:
miR-30c-2-3p, XBP1, ovarian cancer, ER stress, apoptosisAbstract
Ovarian cancer is a common gynecologic cancer with a high rate of recurrence, drug resistance, and mortality, thereby necessitating novel molecular target therapies. Ovarian cancer as a solid tumor has constantly been challenged by endoplasmic reticulum stress (ERS). Currently, XBP1 as a therapeutic target in solid tumors plays a key role in adaptation to ERS. Single-stranded RNAs usually modulate posttranscriptional of the gene activity. miR-30c-2-3p has been demonstrated to inhibit the expression of XBP1. Here, we evaluated the effect of miR-30c-2-3p on controlling XBP1-CHOP-BIM and its apoptotic effects on ovarian cancer cell lines during ERS. The ER stress was assessed using Thioflavin T staining in OVCAR3 and SKOV3 cells. The expression of ER stress genes was measured by QRT-PCR. The protein levels of XBP1(s), BIP/GRP78, CHOP, and BIM were evaluated using Western blotting. Cell viability and apoptosis in STF-083010 and Tunicamycin (Tm) co-treated cells were evaluated using BrdU, MTT, Annexin V-FITC/PI staining, and caspase-12 and -3 activities assays. We found that miR-30c-2-3p significantly decreased the folding capacity of ER, leading to ERS intensification (P<0.05). Additionally, the Western blot analysis showed the modest up-regulation of CHOP and BIM with pro-apoptotic activity and down-regulation of the BIP protein. Furthermore, mimic miR-30c-2-3p transfection not only decreased cell proliferation but also induced cell death in ovarian cancer cells in response to the Tm-treatment. Our results indicated that the apoptotic pathway was induced possibly through activation of caspases -12 and -3 and elevation of the Bax/Bcl-2 ratio. Overall, the present paper adds new evidence to the possible treatment of miR-30c-2-3p via impeding the XBP1 transcription in ovarian cancer cells provoking apoptotic pathways by XBP1/CHOP/BIM mediators.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Shekufe Rezghi Barez, Ahmad Movahedian Attar, Mahmoud Aghaei
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
- The authors keep the copyright and grant the journal the right of first publication under the terms of the Creative Commons Attribution license, CC BY 4.0. This licencse permits unrestricted use, distribution and reproduction in any medium, provided that the original work is properly cited.
- The use of general descriptive names, trade names, trademarks, and so forth in this publication, even if not specifically identified, does not imply that these names are not protected by the relevant laws and regulations.
- Because the advice and information in this journal are believed to be true and accurate at the time of publication, neither the authors, the editors, nor the publisher accept any legal responsibility for any errors or omissions presented in the publication. The publisher makes no guarantee, express or implied, with respect to the material contained herein.
- The authors can enter into additional contracts for the non-exclusive distribution of the journal's published version by citing the initial publication in this journal (e.g. publishing in an institutional repository or in a book).